• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel population-based algorithm portfolios: An empirical study

Yazar
BAŞTÜRK, ALPER
Yao, Xin
KALINLI, ADEM
AKAY, RÜŞTÜ
Üst veri
Tüm öğe kaydını göster
Özet
Although many algorithms have been proposed, no single algorithm is better than others on all types of problems. Therefore, the search characteristics of different algorithms that show complementary behavior can be combined through portfolio structures to improve the performance on a wider set of problems. In this work, a portfolio of the Artificial Bee Colony, Differential Evolution and Particle Swarm Optimization algorithms was constructed and the first parallel implementation of the population-based algorithm portfolio was carried out by means of a Message Passing Interface environment. The parallel implementation of an algorithm or a portfolio can be performed by different models such as master-slave, coarse-grained or a hybrid of both, as used in this study. Hence, the efficiency and running time of various parallel implementations with different parameter values and combinations were investigated on benchmark problems. The performance of the parallel portfolio was compared to those of the single constituent algorithms. The results showed that the proposed models reduced the running time and the portfolio delivered a robust performance compared to each constituent algorithm. It is observed that the speedup gained over the sequential counterpart changed significantly depending on the structure of the portfolio. The portfolio is also applied to a training of neural networks which has been used for time series prediction. Result demonstrate that, portfolio is able to produce good prediction accuracy. (C) 2017 Elsevier B.V. All rights reserved.
Bağlantı
http://hdl.handle.net/20.500.12627/34221
https://doi.org/10.1016/j.neucom.2017.03.061
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV