• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The potential protective roles of zinc, selenium and glutathione on hypoxia-induced TRPM2 channel activation in transfected HEK293 cells

Date
2020
Author
Dursun, Sefik
NAZIROĞLU, Mustafa
Ergun, Dilek Duzgun
HATIRNAZ NG, Özden
PASTACI ÖZSOBACI, Nural
ÖZÇELİK, Derviş
Metadata
Show full item record
Abstract
Hypoxia induces cell death through excessive production of reactive oxygen species (ROS) and calcium (Ca2+) influx in cells and TRPM2 cation channel is activated by oxidative stress. Zinc (Zn), selenium (Se), and glutathione (GSH) have antioxidant properties in several cells and hypoxia-induced TRPM2 channel activity, ROS and cell death may be inhibited by the Zn, Se, and GSH treatments. We investigated effects of Zn, Se, and GSH on lipid peroxidation (LPO), cell cytotoxicity and death through inhibition of TRPM2 channel activity in transfected HEK293 cells exposed to hypoxia defined as oxygen deficiency. We induced four groups as normoxia 30 and 60 min evaluated as control groups, hypoxia 30 and 60 min in the HEK293 cells. The cells were separately pre-incubated with extracellular Zn (100 mu M), Se (150 nM) and GSH (5 mM). Cytotoxicity was evaluated by lactate dehydrogenase (LDH) release and the LDH and LPO levels were significantly higher in the hypoxia-30 and 60 min-exposed cells according to normoxia 30 and 60 min groups. Furthermore, we found that the LPO and LDH were decreased in the hypoxia-exposed cells after being treated with Zn, Se, and GSH according to the hypoxia groups. Compared to the normoxia groups, the current densities of TRPM2 channel were increased in the hypoxia-exposed cells by the hypoxia applications, while the same values were decreased in the treatment of Zn, Se, and GSH according to hypoxia group. In conclusion, hypoxia-induced TRPM2 channel activity, ROS and cell death were recovered by the Se, Zn and GSH treatments.
URI
http://hdl.handle.net/20.500.12627/2776
https://doi.org/10.1080/10799893.2020.1759093
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV