• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning as a clinical decision support tool for patients with acromegaly

Author
Gonen, Mehmet
SULU, CEM
Bektas, Ayyuce Begum
Sahin, Serdar
Durcan, Emre
KARA, ZEHRA
DEMİR, Ahmet Numan
ÖZKAYA, HANDE MEFKURE
TANRIÖVER, NECMETTİN
ÇOMUNOĞLU, NİL
KIZILKILIÇ, OSMAN
Gazioglu, Nurperi
KADIOĞLU, PINAR
Metadata
Show full item record
Abstract
Objective To develop machine learning (ML) models that predict postoperative remission, remission at last visit, and resistance to somatostatin receptor ligands (SRL) in patients with acromegaly and to determine the clinical features associated with the prognosis. Methods We studied outcomes using the area under the receiver operating characteristics (AUROC) values, which were reported as the performance metric. To determine the importance of each feature and easy interpretation, Shapley Additive explanations (SHAP) values, which help explain the outputs of ML models, are used. Results One-hundred fifty-two patients with acromegaly were included in the final analysis. The mean AUROC values resulting from 100 independent replications were 0.728 for postoperative 3 months remission status classification, 0.879 for remission at last visit classification, and 0.753 for SRL resistance status classification. Extreme gradient boosting model demonstrated that preoperative growth hormone (GH) level, age at operation, and preoperative tumor size were the most important predictors for early remission; resistance to SRL and preoperative tumor size represented the most important predictors of remission at last visit, and postoperative 3-month insulin-like growth factor 1 (IGF1) and GH levels (random and nadir) together with the sparsely granulated somatotroph adenoma subtype served as the most important predictors of SRL resistance. Conclusions ML models may serve as valuable tools in the prediction of remission and SRL resistance.
URI
http://hdl.handle.net/20.500.12627/182977
https://doi.org/10.1007/s11102-022-01216-0
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV