• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of sunflower oil treated with lemon balm (Melissa officinalis): Artificial neural networks versus multiple linear regression

Author
SEVGEN, SELÇUK
Sahin, Selin
ŞAMLI, RÜYA
Metadata
Show full item record
Abstract
This study aimed to develop, evaluate, and compare the performance of artificial neural networks and multiple linear regression models in the estimation of phenolic profile of sunflower oil enriched by lemon balm. Total phenolic material in addition to the quality parameters (induction time and antioxidant activity) of the treated oil was compared to those of the pure sunflower oil. The oxidative stability of the product was increased by almost 7% in terms of induction time, while the phenolic profile was increased by almost 2.5 times. Moreover, the antioxidant activity of sunflower oil was enhanced by similar to 5 times over the pure oil. The values of artificial neural networks and multiple linear regression were calculated as: error rates 0.01% and 8.09%; root-mean-square error values 0.45, and 4.36; R-2 values 0.9958 and 0.6183, respectively.
URI
http://hdl.handle.net/20.500.12627/182505
https://doi.org/10.1111/jfpp.16650
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV