• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Greedy segmentation based diabetic retinopathy identification using curvelet transform and scale invariant features

Tarih
2021
Yazar
Gorge, Pelin
Üst veri
Tüm öğe kaydını göster
Özet
Diabetic retinopathy (DR) is the major reason of vision loss in the active population. It can usually be prevented by regulating the blood glucose and providing a timely treatment. DR has clinical features recognized by the experts including the blood vessel area, exudates, neovascularization, hemorrhages, and microaneurysm. Because DR has some varieties and complexities due to its geometrical and haemodynamic features, it is hard and time-consuming to detect DR in manual diagnosis. In Computer Aided Diagnosis (CAD) systems, the features of DR fundus images are detected using computer vision techniques. In this paper, a CAD system is proposed, which distinguishes automatically whether the fundus is normal or it suffers from diabetic retinopathy disease. As preprocess morphological operations like filtering, opening, and dilation are applied to the images firstly, then, Optic Disk (OD) segmentation is implemented using Greedy algorithm. Because of the intensity of an OD is similar to some DR intensities, OD regions are removed from the fundus images for an accurate feature extraction. The features extracted with Curvelet Transform (CT) and Scale Invariant Feature Transform (SIFT), respectively, are concatenated to provide a feature set that defines the fundus data optimally Finally, the feature set is given to the Support Vector Machines (SVM), K-Nearest Neighborhood (KNN), and Naive-Bayes (NB) classifiers for the DR identification purpose. The proposed method achieves the highest accuracy and sensitivity as 92.8% and 97.6%, respectively, with SVM and specificity as 92.5% with KNN classifier.
Bağlantı
http://hdl.handle.net/20.500.12627/172941
https://doi.org/10.36909/jer.v9i1.9407
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV