• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of atmospheric particulate matters via artificial intelligence methods

Date
2021
Author
Cihan, Pinar
ÖZCAN, Hüseyin Kurtuluş
Ozel, Huseyin
Metadata
Show full item record
Abstract
Nowadays, pollutants continue to be released into the atmosphere in increasing amounts with each passing day. Some of them may turn into more harmful forms by accumulating in different layers of the atmosphere at different times and can be transported to other regions with atmospheric events. Particulate matter (PM) is one of the most important air pollutants in the atmosphere, and it can be released into the atmosphere by natural and anthropogenic processes or can be formed in the atmosphere as a result of chemical reactions. In this study, it was aimed to predict PM10 and PM2.5 components measured in an industrial zone selected by adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), classification and regression trees (CART), random forest (RF), k-nearest neighbor (KNN), and extreme learning machine (ELM) methods. To this end, in the first stage of the study, the dataset consisting of air pollutants and meteorological data was created, the temporal and qualitative evaluation of these data was performed, and the PM (PM10 and PM2.5) components were modeled using the "R" software environment by artificial intelligence methods. The ANFIS model was more successful in predicting the PM10 (R-2 = 0.95, RMSE = 5.87, MAE = 4.75) and PM2.5 (R-2 = 0.97, RMSE = 3.05, MAE = 2.18) values in comparison with other methods. As a result of the study, it was clearly observed that the ANFIS model could be used in the prediction of air pollutants.
URI
http://hdl.handle.net/20.500.12627/172909
https://doi.org/10.1007/s10661-021-09091-1
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV