• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrative expressional regulation of TaHKT2;1, TaNa+/H+ vacuolar antiporter, and TaSOS1 genes improve salt tolerance in gamma-ray induced bread wheat mutants

Author
Şen, Ayşe
Metadata
Show full item record
Abstract
0 0 1 286 1633 senayse@istanbul.edu.tr 13 3 1916 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:Cambria;} Soil salinity is one of the most significant environmental constraints to global agricultural productivity. To meet the nutritional needs of the growing population, cereals such as wheat, which are essential for dietary products but also sensitive to salinity, must be improved to be either more resilient or less susceptible to salt stress. The main objective of this study was to examine the responses of advanced mutant lines to salt stress. Five-advanced mutant wheat lines, which were previously found to be drought tolerant, were grown under 150 mM NaCl stress conditions to see how they responded to salt stress conditions. They were generated via 200 Gy gamma-ray applications to the Sagittario commercial cultivar. The results show that the content of thiobarbituric acid-reactive substances (TBARS), chlorophyll, and electrolyte leakage % did not change significantly. Mutant lines showed higher antioxidant defense system parameters (SOD, CAT, POX, and GR). Similarly, the amount of proline involved in intracellular homeostasis was higher in all mutants. Under saline stress, the expression of Triticum aestivum Salt Overly Sensitive 1 (TaSOS1) increased in all mutant lines, the expression of Triticum aestivum High-Affinity Potassium ion Transporter 2;1 (TaHKT2;1) increased in all except in mutant line 5, and the expression of Triticum aestivum Sodium ion / Hydrogen ion vacuolar antiporter (TaNa+/H+ vacuolar antiporter) increased in all except in mutant line 3. Synergetic interaction in the expression of the genes involved in signal transduction resulted in more intracellular K+. Overall, these results suggest that mutants’ responses to salinity stress is related to an ability to accumulate K+ in cells with synergetic expressional regulation of TaHKT2;1, TaNa+/H+ vacuolar antiporter, and TaSOS1 genes, in addition to responses of antioxidant enzyme activities and the accumulation of proline.
URI
http://hdl.handle.net/20.500.12627/1721
https://link.springer.com/article/10.1007/s42976-020-00128-8
https://doi.org/10.1007/s42976-020-00128-8
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV