• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEG signal compression based on classified signature and envelope vector sets

Date
2009
Author
Gurkan, Hakan
Yarman, BEKİR SIDDIK BİNBOĞA
Guz, Umit
Metadata
Show full item record
Abstract
In this paper, a novel method to compress electroencephalogram (EEG) signal is proposed. The proposed method is based on the generation process of the classified signature and envelope vector sets (CSEVS), which employs an effective k-means clustering algorithm. It is assumed that both the transmitter and the receiver units have the same CSEVS. In this work, on a frame basis, EEG signals are modeled by multiplying only three factors called as classified signature vector, classified envelope vector, and gain coefficient (GC), respectively. In other words, every frame of an EEG signal is represented by two indices R and K of CSEVS and the GC. EEG signals are reconstructed frame by frame using these numbers in the receiver unit by employing the CSEVS. The proposed method is evaluated by using some evaluation metrics that are commonly used in this area such as root-mean-square error, percentage root-mean-square difference, and measuring with visual inspection. The performance of the proposed method is also compared with the other methods. It is observed that the proposed method achieves high compression ratios with low-level reconstruction error while preserving diagnostic information in the reconstructed EEG signal. Copyright (C) 2008 John Wiley & Sons, Ltd.
URI
http://hdl.handle.net/20.500.12627/167260
https://doi.org/10.1002/cta.548
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV