• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bagging Support Vector Machine Approaches for Pulmonary Nodule Detection

Author
Kilic, Niyazi
Tartar, Ahmet
Akan, Aydin
Metadata
Show full item record
Abstract
In this paper, pulmonary nodules extracted from computed tomography (CT) images are classified by the single and bagging support vector machine (SVM) classifiers. To determine features, two dimensional principal component analysis is performed. In order to select the best features, three different models are proposed. These models are tested with classifiers of both single SVM and bagging SVM. As a result of tests, bagging SVM is shown to be superior to single SVM.
URI
http://hdl.handle.net/20.500.12627/166543
https://doi.org/10.1109/codit.2013.6689518
Collections
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV