• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and reaction mechanism of Ti3SiC2 ternary compound by carbothermal reduction of TiO2 and SiO2 powder mixtures

Date
2012
Author
Cetinkaya, Senol
Eroglu, Serafettin
Metadata
Show full item record
Abstract
The present study aims to investigate synthesis of Ti3SiC2 from TiO2 and SiO2 powder mixtures by carbothenrial reduction method. Equilibrium TiO2-SiO2-C ternary phase diagram was used to predict the conditions for the formation of Ti3SiC2 at 1800 K under Ar atmosphere. A reactant mixture with a TiO2:SiO2 molar ratio of 1.5 and a C content of 68.75 mol% (26.86 wt%) was initially selected among the thermodynamically favorable reactant compositions for the experimental studies. Two different C sources, graphite flakes and pyrolytic C coating, were used to synthesize Ti3SiC2 at 1800 K under Ar atmosphere. When graphite flakes were used, the products contained a trace amount of Ti3SiC2 phase along with major TiC and minor SiC phases. Whereas, pyrolytic C coating on the oxide particles resulted in the products with much higher Ti3SiC2 contents owing to the close contact between the reactants. Optimal C concentration for the C coated oxide mixtures with a TiO2:SiO2 molar ratio of 1.5 was determined to be 30.05 wt% under the experimental conditions studied. Ti3SiC2 content of the products obtained from this reactant was observed to increase with reaction time to 31 wt% at 75 min beyond which it gradually decreased. XRD studies indicated that the product with the highest ternary carbide content also contained TiC and a trace amount of SiC. SEM-EDS analyses showed that this sample essentially consisted of spherical fine TiC particles and Ti3SiC2 nanolaminates. Equilibrium thermodynamic analysis of the TiO2-SiO2-C system suggested that the reaction of solid Ti2O3 with SiO and CO gases may play a dominant role in the formation of Ti3SiC2. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
URI
http://hdl.handle.net/20.500.12627/149657
https://doi.org/10.1016/j.ceramint.2012.05.020
Collections
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV