• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Ensemble Multi Kernel Framework for Sleep Stage Classification

Author
Yaslan, Yusuf
Sertbas, Nurefsan
Metadata
Show full item record
Abstract
Sleep staging is one of the important areas which is used to diagnose several diseases. People try to obtain models to carry out this operation without human interaction due to the time-consuming and complex nature of classification process. Most of the prior studies use concatenation of the extracted features from the electroencephalography (EEG) signals to obtain a single classifier. However, concatenating different feature views may not always yield better classification performance. This paper proposes a combination of kernels using the genetic algorithm based weight optimization process for sleep stage classification instead of concatenation. Unlike the previous works, our novelty is combining different feature views in a new structure with optimized kernel weights which are obtained from the genetic algorithm. In the proposed model SVM classifiers are trained by distinct feature views namely wavelet decomposition(DWT), autoregressive model based and frequency based energy features. Weighted linear combination of the single kernels is used to construct a new kernel and the performance of the model is compared with traditional kernel function. Experiments are carried out on 10 different patients. The average accuracy of the experiments is considered as final accuracy. The results show that the proposed architecture increases the performance up to approximately 86 % on average. The proposed structure fits better for multi-source data, unlike traditional single kernel methods.
URI
http://hdl.handle.net/20.500.12627/14046
https://doi.org/10.1109/ubmk.2017.8093408
Collections
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV