OBTAINING CANDIDATE SALT TOLERANT WHEAT MUTANT LINES DERIVED FROM COMBINATION OF SODIUM AZIDE MUTAGENESIS AND SOMATIC EMBRYOGENESIS
Abstract
Plant mutants are important bio-resources for crop breeding and functional gene studies. In the present study, conventional chemical mutagenesis technique was combined with somatic embryogenesis to obtain candidate salt tolerant mutant wheat lines. For this purpose, 0-5 mM Sodium Azide (NaN3) was applied for 30 minutes to embryonic calli under in vitro conditions to produce genetic variations in the bread wheat (Triticum aestivum L. cv. Adana 99). Treated and non-treated calli were put in somatic embryo induction media, and 3 and 4 mM NaN3 were determined as optimum mutation doses for somatic embryo induction. The obtained somatic embryos from these optimum mutagen doses were then screened for tolerance in regeneration media containing 125 mM NaCl to be used to improve tolerance to salt stress. In NaN3 treatment, 14 mutants with moderate salt tolerance were obtained. The results suggest that the in vitro technique in combination with chemical mutagenesis may be a useful approach for accelerating breeding strategies to create enough genetic variation in populations and to get fourth generation putative salt tolerant wheat mutant lines in less than 1.5 years.
Collections
- Makale [92796]