• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   Home
  • Avesis
  • Dokümanı Olanlar
  • Makale
  • View Item
  •   Home
  • Avesis
  • Dokümanı Olanlar
  • Makale
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning

Date
2023
Author
Koziel, Slawomir
MAHOUTİ, Peyman
Belen, Aysu
Tari, Ozlem
BELEN, MEHMET ALİ
KARAHAN, SERDAL
Metadata
Show full item record
Abstract
In this work, a computationally efficient method based on data-driven surrogate models is proposed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a module that simultaneously pre-filters unwanted signals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements, and their complex interrelations affecting the scattering response, FSS optimization is a challenging task. Herein, a deep-learning-based algorithm, Modified-Multi-Layer-Perceptron (M2LP), is developed to render an accurate behavioral model of the unit cell. Subsequently, the M2LP model is applied to optimize FSS elements being parts of the Filtenna under design. The exemplary device operates at 5 GHz to 7 GHz band. The numerical results demonstrate that the presented approach allows for an almost 90% reduction of the computational cost of the optimization process as compared to direct EM-driven design. At the same time, physical measurements of the fabricated Filtenna prototype corroborate the relevance of the proposed methodology. One of the important advantages of our technique is that the unit cell model can be re-used to design FSS and Filtenna operating various operating bands without incurring any extra computational expenses.
URI
http://hdl.handle.net/20.500.12627/190473
https://doi.org/10.3390/electronics12071584
https://avesis.istanbul.edu.tr/api/publication/2d763916-1296-44b8-bbaf-4336fc54407f/file
Collections
  • Makale [2276]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

My Account

LoginRegister

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV