Basit öğe kaydını göster

dc.contributor.authorArik, Sabri
dc.contributor.authorFaydasicok, Ozlem
dc.date.accessioned2021-03-04T19:15:08Z
dc.date.available2021-03-04T19:15:08Z
dc.date.issued2012
dc.identifier.citationFaydasicok O., Arik S., "Further analysis of global robust stability of neural networks with multiple time delays", JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, cilt.349, ss.813-825, 2012
dc.identifier.issn0016-0032
dc.identifier.otherav_8ed118dd-492c-4aaf-8ac5-a0c335ba3206
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/96492
dc.identifier.urihttps://doi.org/10.1016/j.jfranklin.2011.11.007
dc.description.abstractThis paper deals with the problem of the global robust asymptotic stability of the class of dynamical neural networks with multiple time delays. We propose a new alternative sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point under parameter uncertainties of the neural system. We first prove the existence and uniqueness of the equilibrium point by using the Homomorphic mapping theorem. Then, by employing a new Lyapunov functional, the Lyapunov stability theorem is used to establish the sufficient condition for the asymptotic stability of the equilibrium point. The obtained condition is independent of time delays and relies on the network parameters of the neural system only. Therefore, the equilibrium and stability properties of the delayed neural network can be easily checked. We also make a detailed comparison between our result and the previous corresponding results derived in the previous literature. This comparison proves that our result is new and improves some of the previously reported robust stability results. Some illustrative numerical examples are given to show the applicability and advantages of our result. (C) 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectHarita Mühendisliği-Geomatik
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectKontrol ve Sistem Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.subjectMATEMATİK, İNTERDİSKÜP UYGULAMALAR
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMÜHENDİSLİK, MULTİDİSİPLİNER
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectOTOMASYON & KONTROL SİSTEMLERİ
dc.titleFurther analysis of global robust stability of neural networks with multiple time delays
dc.typeMakale
dc.relation.journalJOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
dc.contributor.departmentIşık Üniversitesi , ,
dc.identifier.volume349
dc.identifier.issue3
dc.identifier.startpage813
dc.identifier.endpage825
dc.contributor.firstauthorID57579


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster