Show simple item record

dc.contributor.authorMoshokoa, Seithuti Philemon
dc.contributor.authorUnlu, Canan
dc.contributor.authorKhalique, Chaudry Masood
dc.contributor.authorJassim, Hassan Kamil
dc.date.accessioned2021-03-04T17:49:30Z
dc.date.available2021-03-04T17:49:30Z
dc.identifier.citationJassim H. K. , Unlu C., Moshokoa S. P. , Khalique C. M. , "Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators", MATHEMATICAL PROBLEMS IN ENGINEERING, 2015
dc.identifier.issn1024-123X
dc.identifier.othervv_1032021
dc.identifier.otherav_876cf167-fc76-4e17-888b-3cd87dd156c8
dc.identifier.urihttp://hdl.handle.net/20.500.12627/91995
dc.identifier.urihttps://doi.org/10.1155/2015/309870
dc.description.abstractThe local fractional Laplace variational iteration method (LFLVIM) is employed to handle the diffusion and wave equations on Cantor set. The operators are taken in the local sense. The nondifferentiable approximate solutions are obtained by using the local fractional Laplace variational iteration method, which is the coupling method of local fractional variational iteration method and Laplace transform. Illustrative examples are included to demonstrate the high accuracy and fast convergence of this new algorithm.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectTemel Bilimler (SCI)
dc.subjectHarita Mühendisliği-Geomatik
dc.subjectMatematik
dc.subjectMATEMATİK, İNTERDİSKÜP UYGULAMALAR
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, MULTİDİSİPLİNER
dc.titleLocal Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators
dc.typeMakale
dc.relation.journalMATHEMATICAL PROBLEMS IN ENGINEERING
dc.contributor.departmentUniversity of Mazandaran , ,
dc.contributor.firstauthorID220089


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record