dc.contributor.author | SINGH, Sagar | |
dc.contributor.author | Kanli, Ali İsmet | |
dc.contributor.author | Sevgen, Selcuk | |
dc.date.accessioned | 2021-03-02T20:53:16Z | |
dc.date.available | 2021-03-02T20:53:16Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | SINGH S., Kanli A. İ. , Sevgen S., "A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field", STUDIA GEOPHYSICA ET GEODAETICA, cilt.60, sa.1, ss.130-140, 2016 | |
dc.identifier.issn | 0039-3169 | |
dc.identifier.other | av_042f5f08-78d0-4e50-86a1-f51055c93e24 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/8752 | |
dc.identifier.uri | https://doi.org/10.1007/s11200-015-0820-2 | |
dc.description.abstract | This study aims to design a back-propagation artificial neural network (BP-ANN) to estimate the reliable porosity values from the well log data taken from Kansas gas field in the USA. In order to estimate the porosity, a neural network approach is applied, which uses as input sonic, density and resistivity log data, which are known to affect the porosity. This network easily sets up a relationship between the input data and the output parameters without having prior knowledge of petrophysical properties, such as pore-fluid type or matrix material type. The results obtained from the empirical relationship are compared with those from the neural network and a good correlation is observed. Thus, the ANN technique could be used to predict the porosity from other well log data. | |
dc.language.iso | eng | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | JEOKİMYA VE JEOFİZİK | |
dc.subject | Yerbilimleri | |
dc.subject | Jeofizik Mühendisliği | |
dc.title | A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field | |
dc.type | Makale | |
dc.relation.journal | STUDIA GEOPHYSICA ET GEODAETICA | |
dc.contributor.department | Indian Institute of Technology System (IIT System) , , | |
dc.identifier.volume | 60 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 130 | |
dc.identifier.endpage | 140 | |
dc.contributor.firstauthorID | 59604 | |