Basit öğe kaydını göster

dc.contributor.authorUcan, Osman Nuri
dc.contributor.authorGunes, Ibrahim
dc.contributor.authorKiremitci, BARIŞ
dc.contributor.authorGözütok, Abdulkadir
dc.date.accessioned2021-03-04T09:44:00Z
dc.date.available2021-03-04T09:44:00Z
dc.date.issued2009
dc.identifier.citationGunes I., Gözütok A., Ucan O. N. , Kiremitci B., "Power transformer fault type estimation using artificial neural network based on dissolved gas in oil analysis", ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, cilt.17, sa.4, ss.193-198, 2009
dc.identifier.issn1472-8915
dc.identifier.othervv_1032021
dc.identifier.otherav_69ad3181-15ba-44a4-bc5e-0b5dce759264
dc.identifier.urihttp://hdl.handle.net/20.500.12627/73194
dc.description.abstractIn this paper, determine the fault type of failed power transformers with a few key gases with artficial neural network (ANN) using Levenberg-Marquardt algorithm is presented. Three Dissolved Gas in oil Analysis (DGA) criteria commonly used in industry was trained and tested with neural network Levenberg-Marquardt algorithm. Three key gases Methane (CH(4)), Ethylene (C(2)H(4)) and Acetylene (C(2)H(2)) were chosen for this study. Percentage of each gas used as inputs of ANN. The output is one of the fault types PD, D1, D2, T1, T2, T3. The results of this study are useful in development of a reliable transformer automated diagnostic system using artificial neural network. Multiple layer feedforward ANN is trained with Levenberg-Marquardt learning algorithm. This algorithm appears to be the fastest method for training moderate-sized feedforward neural networks. We determined best neural network topology and reached 100% diagnostic success.
dc.language.isoeng
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titlePower transformer fault type estimation using artificial neural network based on dissolved gas in oil analysis
dc.typeMakale
dc.relation.journalENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS
dc.contributor.departmentHamitabat Nat Gas Combined Cycle Power Plant , ,
dc.identifier.volume17
dc.identifier.issue4
dc.identifier.startpage193
dc.identifier.endpage198
dc.contributor.firstauthorID75114


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster