Show simple item record

dc.contributor.authorAlbora, Ali Muhittin
dc.contributor.authorBİLGİLİ, Erdem
dc.contributor.authorGoknar, IC
dc.contributor.authorUÇAN, Osman Muri
dc.date.accessioned2021-03-03T21:18:32Z
dc.date.available2021-03-03T21:18:32Z
dc.date.issued2005
dc.identifier.citationBİLGİLİ E., Goknar I., Albora A. M. , UÇAN O. M. , "Potential anomaly separation and archeological site localization using genetically trained multi-level cellular neural networks", ETRI JOURNAL, cilt.27, sa.3, ss.294-303, 2005
dc.identifier.issn1225-6463
dc.identifier.otherav_5e81061b-2334-4012-a70d-35887a7a7bef
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/66069
dc.identifier.urihttps://doi.org/10.4218/etrij.05.0104.0087
dc.description.abstractIn this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.
dc.language.isoeng
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik ve Teknoloji
dc.subjectSinyal İşleme
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectTELEKOMÜNİKASYON
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.titlePotential anomaly separation and archeological site localization using genetically trained multi-level cellular neural networks
dc.typeMakale
dc.relation.journalETRI JOURNAL
dc.contributor.department, ,
dc.identifier.volume27
dc.identifier.issue3
dc.identifier.startpage294
dc.identifier.endpage303
dc.contributor.firstauthorID30892


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record