dc.contributor.author | Skoruppa, Nils-Peter | |
dc.contributor.author | Boylan, Hatice | |
dc.contributor.author | Zhou, Haigang | |
dc.date.accessioned | 2021-03-03T21:11:38Z | |
dc.date.available | 2021-03-03T21:11:38Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Boylan H., Skoruppa N., Zhou H., "COUNTING ZEROS IN QUATERNION ALGEBRAS USING JACOBI FORMS", TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, cilt.371, sa.9, ss.6487-6509, 2019 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.other | av_5deb4b4c-fe62-473f-a1fd-44f37883af8c | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/65712 | |
dc.identifier.uri | https://doi.org/10.1090/tran/7575 | |
dc.description.abstract | We use the theory of Jacobi forms to study the number of elements in a maximal order of a definite quaternion algebra over the field of rational numbers whose characteristic polynomial equals a given polynomial. A certain weighted average of such numbers equals (up to some trivial factors) the Hurwitz class number H(4n-r(2)). As a consequence we obtain new proofs for Eichler's trace formula and for formulas for the class and type number of definite quaternion algebras. As a secondary result we derive explicit formulas for Jacobi Eisenstein series of weight 2 on Gamma(0)(N) and for the action of Hecke operators on Jacobi theta series associated to maximal orders of definite quaternion algebras. | |
dc.language.iso | eng | |
dc.subject | Matematik | |
dc.subject | Temel Bilimler (SCI) | |
dc.title | COUNTING ZEROS IN QUATERNION ALGEBRAS USING JACOBI FORMS | |
dc.type | Makale | |
dc.relation.journal | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY | |
dc.contributor.department | Universitat Siegen , , | |
dc.identifier.volume | 371 | |
dc.identifier.issue | 9 | |
dc.identifier.startpage | 6487 | |
dc.identifier.endpage | 6509 | |
dc.contributor.firstauthorID | 264031 | |