Show simple item record

dc.contributor.authorSkoruppa, Nils-Peter
dc.contributor.authorBoylan, Hatice
dc.contributor.authorZhou, Haigang
dc.date.accessioned2021-03-03T21:11:38Z
dc.date.available2021-03-03T21:11:38Z
dc.date.issued2019
dc.identifier.citationBoylan H., Skoruppa N., Zhou H., "COUNTING ZEROS IN QUATERNION ALGEBRAS USING JACOBI FORMS", TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, cilt.371, sa.9, ss.6487-6509, 2019
dc.identifier.issn0002-9947
dc.identifier.otherav_5deb4b4c-fe62-473f-a1fd-44f37883af8c
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/65712
dc.identifier.urihttps://doi.org/10.1090/tran/7575
dc.description.abstractWe use the theory of Jacobi forms to study the number of elements in a maximal order of a definite quaternion algebra over the field of rational numbers whose characteristic polynomial equals a given polynomial. A certain weighted average of such numbers equals (up to some trivial factors) the Hurwitz class number H(4n-r(2)). As a consequence we obtain new proofs for Eichler's trace formula and for formulas for the class and type number of definite quaternion algebras. As a secondary result we derive explicit formulas for Jacobi Eisenstein series of weight 2 on Gamma(0)(N) and for the action of Hecke operators on Jacobi theta series associated to maximal orders of definite quaternion algebras.
dc.language.isoeng
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.titleCOUNTING ZEROS IN QUATERNION ALGEBRAS USING JACOBI FORMS
dc.typeMakale
dc.relation.journalTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
dc.contributor.departmentUniversitat Siegen , ,
dc.identifier.volume371
dc.identifier.issue9
dc.identifier.startpage6487
dc.identifier.endpage6509
dc.contributor.firstauthorID264031


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record