Show simple item record

dc.contributor.authorAlkan, Güler
dc.contributor.authorSatır, Tanzer
dc.contributor.authorUcan, Osman N.
dc.contributor.authorBayat, Cuma
dc.contributor.authorDemir, Hasan
dc.date.accessioned2021-03-03T19:22:25Z
dc.date.available2021-03-03T19:22:25Z
dc.identifier.citationSatır T., Demir H., Alkan G., Ucan O. N. , Bayat C., "SHIP WASTE FORECASTING AT THE BOTAS LNG PORT USING ARTIFICIAL NEURAL NETWORKS", FRESENIUS ENVIRONMENTAL BULLETIN, cilt.17, ss.2064-2070, 2008
dc.identifier.issn1018-4619
dc.identifier.othervv_1032021
dc.identifier.otherav_542a579e-888d-49d1-a0dd-eda1a8192780
dc.identifier.urihttp://hdl.handle.net/20.500.12627/59628
dc.description.abstractCargo and passenger vessels are required to give their waste to reception facilities when at port, and due to new regulations Turkish ports need to establish or reconstruct these facilities. It is thus very important for ports to be able to predict the quantity of waste. In this study, the authors use Artificial Neural Networks (ANNs) to model four years of data on the reception of ship's waste at the Botas LNG Port in Marmara Ereglisi, Turkey. Satisfactory results are obtained by the ANN outputs. and confirmed by classical approaches. This ANN forecasting model can be used by waste management companies to plan new ports.
dc.language.isoeng
dc.subjectÇevre / Ekoloji
dc.subjectTarım ve Çevre Bilimleri (AGE)
dc.subjectTarımsal Bilimler
dc.subjectÇevre Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectÇEVRE BİLİMLERİ
dc.titleSHIP WASTE FORECASTING AT THE BOTAS LNG PORT USING ARTIFICIAL NEURAL NETWORKS
dc.typeMakale
dc.relation.journalFRESENIUS ENVIRONMENTAL BULLETIN
dc.contributor.departmentİstanbul Teknik Üniversitesi , Denizcilik , Deniz Ulaştırma İşletme Mühendisliği
dc.identifier.volume17
dc.identifier.startpage2064
dc.identifier.endpage2070
dc.contributor.firstauthorID35979


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record