dc.contributor.author | Alkan, Güler | |
dc.contributor.author | Satır, Tanzer | |
dc.contributor.author | Ucan, Osman N. | |
dc.contributor.author | Bayat, Cuma | |
dc.contributor.author | Demir, Hasan | |
dc.date.accessioned | 2021-03-03T19:22:25Z | |
dc.date.available | 2021-03-03T19:22:25Z | |
dc.identifier.citation | Satır T., Demir H., Alkan G., Ucan O. N. , Bayat C., "SHIP WASTE FORECASTING AT THE BOTAS LNG PORT USING ARTIFICIAL NEURAL NETWORKS", FRESENIUS ENVIRONMENTAL BULLETIN, cilt.17, ss.2064-2070, 2008 | |
dc.identifier.issn | 1018-4619 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_542a579e-888d-49d1-a0dd-eda1a8192780 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/59628 | |
dc.description.abstract | Cargo and passenger vessels are required to give their waste to reception facilities when at port, and due to new regulations Turkish ports need to establish or reconstruct these facilities. It is thus very important for ports to be able to predict the quantity of waste. In this study, the authors use Artificial Neural Networks (ANNs) to model four years of data on the reception of ship's waste at the Botas LNG Port in Marmara Ereglisi, Turkey. Satisfactory results are obtained by the ANN outputs. and confirmed by classical approaches. This ANN forecasting model can be used by waste management companies to plan new ports. | |
dc.language.iso | eng | |
dc.subject | Çevre / Ekoloji | |
dc.subject | Tarım ve Çevre Bilimleri (AGE) | |
dc.subject | Tarımsal Bilimler | |
dc.subject | Çevre Mühendisliği | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | ÇEVRE BİLİMLERİ | |
dc.title | SHIP WASTE FORECASTING AT THE BOTAS LNG PORT USING ARTIFICIAL NEURAL NETWORKS | |
dc.type | Makale | |
dc.relation.journal | FRESENIUS ENVIRONMENTAL BULLETIN | |
dc.contributor.department | İstanbul Teknik Üniversitesi , Denizcilik , Deniz Ulaştırma İşletme Mühendisliği | |
dc.identifier.volume | 17 | |
dc.identifier.startpage | 2064 | |
dc.identifier.endpage | 2070 | |
dc.contributor.firstauthorID | 35979 | |