Show simple item record

dc.contributor.authorAcerce, Muharrem
dc.contributor.authorAkdogan, E. Koray
dc.contributor.authorChhowalla, Manish
dc.date.accessioned2021-03-03T17:07:48Z
dc.date.available2021-03-03T17:07:48Z
dc.date.issued2017
dc.identifier.citationAcerce M., Akdogan E. K. , Chhowalla M., "Metallic molybdenum disulfide nanosheet-based electrochemical actuators", NATURE, cilt.549, sa.7672, ss.370-383, 2017
dc.identifier.issn0028-0836
dc.identifier.otherav_48153ba4-2a76-4bdd-bae8-94e36ef86807
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/51985
dc.identifier.urihttps://doi.org/10.1038/nature23668
dc.description.abstractActuators that convert electrical energy to mechanical energy are useful in a wide variety of electromechanical systems and in robotics(1-6), with applications such as steerable catheters(7), adaptive wings for aircraft and drag-reducing wind turbines(8). Actuation systems can be based on various stimuli, such as heat, solvent adsorption/desorption(4,9), or electrochemical action (in systems such as carbon nanotube electrodes(1,10), graphite electrodes(11), polymer electrodes(6,12-14) and metals(15)). Here we demonstrate that the dynamic expansion and contraction of electrode films formed by restacking chemically exfoliated nanosheets of two-dimensional metallic molybdenum disulfide (MoS2) on thin plastic substrates can generate substantial mechanical forces. These films are capable of lifting masses that are more than 150 times that of the electrode over several millimetres and for hundreds of cycles. Specifically, the MoS2 films are able to generate mechanical stresses of about 17 megapascals-higher than mammalian muscle (about 0.3 megapascals) 3 and comparable to ceramic piezoelectric actuators (about 40 megapascals)-and strains of about 0.6 per cent, operating at frequencies up to 1 hertz. The actuation performance is attributed to the high electrical conductivity of the metallic 1T phase of MoS2 nanosheets, the elastic modulus of restacked MoS2 layers (2 to 4 gigapascals) and fast proton diffusion between the nanosheets. These results could lead to new electrochemical actuators for high-strain and high-frequency applications.
dc.language.isoeng
dc.subjectTemel Bilimler (SCI)
dc.subjectÇOK DİSİPLİNLİ BİLİMLER
dc.subjectDoğa Bilimleri Genel
dc.subjectTemel Bilimler
dc.titleMetallic molybdenum disulfide nanosheet-based electrochemical actuators
dc.typeMakale
dc.relation.journalNATURE
dc.contributor.departmentRutgers State University New Brunswick , ,
dc.identifier.volume549
dc.identifier.issue7672
dc.identifier.startpage370
dc.identifier.endpage383
dc.contributor.firstauthorID349246


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record