Show simple item record

dc.contributor.authorLevrat, Bernard
dc.contributor.authorSaygili, Neslihan Sirin
dc.contributor.authorAcarman, Tankut
dc.contributor.authorAmghar, Tassadit
dc.date.accessioned2021-03-03T16:48:22Z
dc.date.available2021-03-03T16:48:22Z
dc.identifier.citationSaygili N. S. , Acarman T., Amghar T., Levrat B., "Managing Genetic Algorithm Parameters to Improve SegGen, a Thematic Segmentation Algorithm", 24th International Workshop on Database and Expert Systems Applications (DEXA), Prague, Çek Cumhuriyeti, 26 - 30 Ağustos 2013, ss.58-62
dc.identifier.otherav_464b6115-a913-4b7c-855a-56d333660ef4
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/50862
dc.identifier.urihttps://doi.org/10.1109/dexa.2013.15
dc.description.abstractSegGen [1] is a linear thematic segmentation algorithm grounded on a variant of the Strength Pareto Evolutionary Algorithm [2] and aims at optimizing the two criteria of the Salton's [3] definition of segments: a segment is a part of text whose internal cohesion and dissimilarity with its adjacent segments are maximal. This paper describes improvements that have been implemented in the approach taken by SegGen by tuning the genetic algorithm parameters according with the evolution of the quality of the generated populations. Two kinds of reasons originate the tuning of the parameters and have been implemented here. First as it could be measured by the values of global criteria of the population quality, the global quality of the generated populations increases as the process goes and it seems reasonable to set values to parameters and define new operators, which favor intensification and diminish diversification factors in the search process. Second since individuals in the populations are plausible segmentations it seems reasonable to weight sentences in the current segmentation depending on their distance to the boundaries of the segment they belong to for the calculus of similarities between sentences implied in the two criteria to be optimized. Although this tuning of the parameters of the algorithm currently rests on estimations based on experiments, first results are promising.
dc.language.isoeng
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectBilgi Güvenliği ve Güvenilirliği
dc.subjectBiyoenformatik
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, BİLGİ SİSTEMLERİ
dc.titleManaging Genetic Algorithm Parameters to Improve SegGen, a Thematic Segmentation Algorithm
dc.typeBildiri
dc.contributor.departmentUniversité D''angers , ,
dc.contributor.firstauthorID141061


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record