Basit öğe kaydını göster

dc.contributor.authorOrman, Zeynep
dc.contributor.authorArik, Sabri
dc.date.accessioned2021-03-03T15:15:43Z
dc.date.available2021-03-03T15:15:43Z
dc.identifier.citationOrman Z., Arik S., "New results for global stability of Cohen-Grossberg neural networks with discrete time delays", NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, cilt.4232, ss.570-579, 2006
dc.identifier.issn0302-9743
dc.identifier.othervv_1032021
dc.identifier.otherav_3e1da569-2cd4-4a14-be1f-f9aa0ca7d486
dc.identifier.urihttp://hdl.handle.net/20.500.12627/45617
dc.description.abstractThis paper studies the global convergence properties of Cohen-Grossberg neural networks with discrete time delays. Without assuming the symmetry of interconnection weight coefficients, and the monotonicity and differentiability of activation functions, and by employing Lyapunov functionals, we derive new delay independent sufficient conditions under which a delayed Cohen-Grossberg neural network converges to a globally asymptotically stable equilibrium point. Some examples are given to illustrate the advantages of the results over the previously reported results in the literature.
dc.language.isoeng
dc.subjectBiyoenformatik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.titleNew results for global stability of Cohen-Grossberg neural networks with discrete time delays
dc.typeMakale
dc.relation.journalNEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS
dc.contributor.departmentİstanbul Üniversitesi , Mühendislik Fakültesi , Bilgisayar Mühendisliği
dc.identifier.volume4232
dc.identifier.startpage570
dc.identifier.endpage579
dc.contributor.firstauthorID57555


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster