Basit öğe kaydını göster

dc.contributor.authorGumus, Fatma
dc.contributor.authorYILTAŞ KAPLAN, Derya
dc.date.accessioned2021-03-02T17:50:19Z
dc.date.available2021-03-02T17:50:19Z
dc.date.issued2020
dc.identifier.citationGumus F., YILTAŞ KAPLAN D., "Congestion Prediction System With Artificial Neural Networks", INTERNATIONAL JOURNAL OF INTERDISCIPLINARY TELECOMMUNICATIONS AND NETWORKING, cilt.12, sa.3, ss.28-43, 2020
dc.identifier.othervv_1032021
dc.identifier.otherav_3ae3857d-e8cd-424b-ac7c-d987366218da
dc.identifier.urihttp://hdl.handle.net/20.500.12627/4423
dc.identifier.urihttps://doi.org/10.4018/ijitn.2020070103
dc.description.abstractSoftware Defined Network (SDN) is a programmable network architecture that provides innovative solutions to the problems of the traditional networks. Congestion control is still an uncharted territory for this technology. In this work, a congestion prediction scheme has been developed by using neural networks. Minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm was performed on the data collected from the OMNET++ simulation. The novelty of this study also covers the implementation of mRMR in an SDN congestion prediction problem. After evaluating the relevance scores, two highest ranking features were used. On the learning stage Nonlinear Autoregressive Exogenous Neural Network (NARX), Nonlinear Autoregressive Neural Network, and Nonlinear Feedforward Neural Network algorithms were executed. These algorithms had not been used before in SDNs according to the best of the authors knowledge. The experiments represented that NARX was the best prediction algorithm. This machine learning approach can be easily integrated to different topologies and application areas.
dc.language.isoeng
dc.subjectMühendislik
dc.subjectMühendislik ve Teknoloji
dc.subjectTELEKOMÜNİKASYON
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.titleCongestion Prediction System With Artificial Neural Networks
dc.typeMakale
dc.relation.journalINTERNATIONAL JOURNAL OF INTERDISCIPLINARY TELECOMMUNICATIONS AND NETWORKING
dc.contributor.departmentYıldız Teknik Üniversitesi , ,
dc.identifier.volume12
dc.identifier.issue3
dc.identifier.startpage28
dc.identifier.endpage43
dc.contributor.firstauthorID2284022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster