dc.contributor.author | Cevik, Nazife | |
dc.contributor.author | Sakar, C. Okan | |
dc.contributor.author | Kursun, Olcay | |
dc.date.accessioned | 2021-03-03T13:45:33Z | |
dc.date.available | 2021-03-03T13:45:33Z | |
dc.identifier.citation | Cevik N., Sakar C. O. , Kursun O., "Analysis of shared miRNAs of different species using ensemble CCA and genetic distance", COMPUTERS IN BIOLOGY AND MEDICINE, cilt.64, ss.261-267, 2015 | |
dc.identifier.issn | 0010-4825 | |
dc.identifier.other | av_35dba8df-2d27-40b6-b8c0-b81b93dd44f3 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/40384 | |
dc.identifier.uri | https://doi.org/10.1016/j.compbiomed.2015.06.023 | |
dc.description.abstract | MicroRNA is a type of single stranded RNA molecule and has an important role for gene expression. Although there have been a number of computational methodologies in bioinformatics research for miRNA classification and target prediction tasks, analysis of shared miRNAs among different species has not yet been addressed. In this article, we analyzed miRNAs that have the same name and function but have different sequences and belong to different (but closely related) species which are constructed from the online miRBase database. We used sequence-driven features and performed the standard and the ensemble versions of Canonical Correlation Analysis (CCA). However, due to its sensitivity to noise and outliers, we extended it using an ensemble approach. Using linear combinations of dimer features, the proposed Ensemble CCA (ECCA) method has identified higher test-set-correlations than CCA. Moreover, our analysis reveals that the Redundancy Index of ECCA applied to a pair of species has correlation with their genetic distance. (C) 2015 Elsevier Ltd. All rights reserved. | |
dc.language.iso | eng | |
dc.subject | Bilgisayar Grafiği | |
dc.subject | Biyomedikal Mühendisliği | |
dc.subject | Yaşam Bilimleri | |
dc.subject | Biyoinformatik | |
dc.subject | Temel Bilimler | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Tıbbi Biyoloji | |
dc.subject | BİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR | |
dc.subject | Bilgisayar Bilimi | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | MÜHENDİSLİK, BİYOMEDİKSEL | |
dc.subject | MATEMATİKSEL VE BİLGİSAYAR BİYOLOJİSİ | |
dc.subject | Tıp | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Temel Tıp Bilimleri | |
dc.subject | Biyokimya | |
dc.subject | Yaşam Bilimleri (LIFE) | |
dc.subject | BİYOLOJİ | |
dc.subject | Biyoloji ve Biyokimya | |
dc.subject | Mühendislik | |
dc.subject | Bilgisayar Bilimleri | |
dc.title | Analysis of shared miRNAs of different species using ensemble CCA and genetic distance | |
dc.type | Makale | |
dc.relation.journal | COMPUTERS IN BIOLOGY AND MEDICINE | |
dc.contributor.department | İstanbul Üniversitesi , , | |
dc.identifier.volume | 64 | |
dc.identifier.startpage | 261 | |
dc.identifier.endpage | 267 | |
dc.contributor.firstauthorID | 74495 | |