Basit öğe kaydını göster

dc.contributor.authorPekel Ozmen, Ebru
dc.contributor.authorÖzcan, Tuncay
dc.date.accessioned2021-03-03T12:59:11Z
dc.date.available2021-03-03T12:59:11Z
dc.date.issued2020
dc.identifier.citationPekel Ozmen E., Özcan T., "Diagnosis of diabetes mellitus using artificial neural network and classification and regression tree optimized with genetic algorithm", JOURNAL OF FORECASTING, cilt.39, sa.4, ss.661-670, 2020
dc.identifier.issn0277-6693
dc.identifier.otherav_313b67e8-0fa7-4ea0-a1b0-221fcc112963
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/37528
dc.identifier.urihttps://doi.org/10.1002/for.2652
dc.description.abstractDiabetes mellitus is one of the most important public health problems affecting millions of people worldwide. An early and accurate diagnosis of diabetes mellitus has critical importance for the medical treatments of patients. In this study, first, artificial neural network (ANN) and classification and regression tree (CART)-based approaches are proposed for the diagnosis of diabetes. Hybrid ANN-GA and CART-GA approaches are then developed using a genetic algorithm (GA) to improve the classification accuracy of these approaches. Finally, the performances of the developed approaches are evaluated with a Pima Indian diabetes data set. Experimental results show that the developed hybrid CART-GA approach outperforms the ANN, CART, and ANN-GA approaches in terms of classification accuracy, and this approach provides an efficient methodology for diagnosis of diabetes mellitus.
dc.language.isoeng
dc.subjectSosyal ve Beşeri Bilimler
dc.subjectYönetim ve Çalışma Psikolojisi
dc.subjectİktisat
dc.subjectÇalışma Ekonomisi ve Endüstri ilişkileri
dc.subjectYÖNETİM
dc.subjectSosyal Bilimler (SOC)
dc.subjectEkonomi ve İş
dc.subjectEKONOMİ
dc.titleDiagnosis of diabetes mellitus using artificial neural network and classification and regression tree optimized with genetic algorithm
dc.typeMakale
dc.relation.journalJOURNAL OF FORECASTING
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , ,
dc.identifier.volume39
dc.identifier.issue4
dc.identifier.startpage661
dc.identifier.endpage670
dc.contributor.firstauthorID2284002


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster