Basit öğe kaydını göster

dc.contributor.authorAŞCI, METİN
dc.contributor.authorOzcep, Tazegul
dc.contributor.authorKarabulut, Savas
dc.contributor.authorTezel, Okan
dc.contributor.authorOzcep, Ferhat
dc.contributor.authorYildirim, Eray
dc.date.accessioned2021-03-03T12:34:13Z
dc.date.available2021-03-03T12:34:13Z
dc.identifier.citationOzcep F., Yildirim E., Tezel O., AŞCI M., Karabulut S., Ozcep T., "A Review on Artificial Intelligence Based Parameter Forecasting for Soil-Water Content", 12th International Conference on Machine Learning and Data Mining (MLDM), New-York, Amerika Birleşik Devletleri, 16 - 21 Temmuz 2016, cilt.9729, ss.356-361
dc.identifier.otherav_2ecfe182-359a-4127-91fc-0a0a9978a380
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/35997
dc.identifier.urihttps://doi.org/10.1007/978-3-319-41920-6_27
dc.description.abstractThe purpose of this study, by using an artificial intelligent approaches, is to compare a correlation between geophysical and geotechnical parameters. The input variables for this system are the electrical resistivity reading, the water content laboratory measurements. The output variable is water content of soils. In this study, our data sets are clustered into 120 training sets and 28 testing sets for constructing the fuzzy system and validating the ability of system prediction, respectively. Relationships between soil water content and electrical parameters were obtained by curvilinear models. The ranges of our samples are changed between 1 - 50 ohm. m (for resistivity) and 20 - 60 (%, for water content). An artificial intelligent system (artificial neural networks, Fuzzy logic applications, Mamdani and Sugeno approaches) are based on some comparisons about correlation between electrical resistivity and soil-water content, for Istanbul and Golcuk Soils in Turkey.
dc.language.isoeng
dc.subjectBilgisayar Grafiği
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleA Review on Artificial Intelligence Based Parameter Forecasting for Soil-Water Content
dc.typeBildiri
dc.contributor.departmentSakarya Üniversitesi , ,
dc.identifier.volume9729
dc.contributor.firstauthorID148578


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster