dc.contributor.author | Tunaci, Mehtap | |
dc.contributor.author | Ertas, Goekhan | |
dc.contributor.author | Guelcuer, H. Oezcan | |
dc.contributor.author | Osman, Onur | |
dc.contributor.author | Dursun, Memduh | |
dc.contributor.author | Ucan, Osman N. | |
dc.date.accessioned | 2021-03-03T11:30:07Z | |
dc.date.available | 2021-03-03T11:30:07Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Ertas G., Guelcuer H. O. , Osman O., Ucan O. N. , Tunaci M., Dursun M., "Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching", COMPUTERS IN BIOLOGY AND MEDICINE, cilt.38, sa.1, ss.116-126, 2008 | |
dc.identifier.issn | 0010-4825 | |
dc.identifier.other | av_28410ead-1432-4993-8e96-16b40470cbef | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/31920 | |
dc.identifier.uri | https://doi.org/10.1016/j.compbiomed.2007.08.001 | |
dc.description.abstract | A novel fully automated system is introduced to facilitate lesion detection in dynamic contrast-enhanced, magnetic resonance mammography (DCE-MRM). The system extracts breast regions from pre-contrast images using a cellular neural network, generates normalized maximum intensity-time ratio (nMITR) maps and performs 3D template matching with three layers of 12 x 12 cells to detect lesions. A breast is considered to be properly segmented when relative overlap > 0.85 and misclassification rate < 0.10. Sensitivity, false-positive rate per slice and per lesion are used to assess detection performance. | |
dc.language.iso | eng | |
dc.subject | Bilgisayar Bilimleri | |
dc.subject | Bilgisayar Grafiği | |
dc.subject | Biyomedikal Mühendisliği | |
dc.subject | Yaşam Bilimleri | |
dc.subject | Biyoinformatik | |
dc.subject | Temel Bilimler | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | MÜHENDİSLİK, BİYOMEDİKSEL | |
dc.subject | Mühendislik | |
dc.subject | MATEMATİKSEL VE BİLGİSAYAR BİYOLOJİSİ | |
dc.subject | Tıp | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Temel Tıp Bilimleri | |
dc.subject | Biyokimya | |
dc.subject | Tıbbi Biyoloji | |
dc.subject | BİYOLOJİ | |
dc.subject | Biyoloji ve Biyokimya | |
dc.subject | Yaşam Bilimleri (LIFE) | |
dc.subject | BİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR | |
dc.subject | Bilgisayar Bilimi | |
dc.title | Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching | |
dc.type | Makale | |
dc.relation.journal | COMPUTERS IN BIOLOGY AND MEDICINE | |
dc.contributor.department | Boğaziçi Üniversitesi , , | |
dc.identifier.volume | 38 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 116 | |
dc.identifier.endpage | 126 | |
dc.contributor.firstauthorID | 186189 | |