Basit öğe kaydını göster

dc.contributor.authorGunduz, Aysegul
dc.contributor.authorGurgen, Fikret
dc.contributor.authorSakar, C. Okan
dc.contributor.authorTunc, Hunkar C.
dc.contributor.authorApaydin, Hulya
dc.contributor.authorSERBES, Görkem
dc.contributor.authorTutuncu, Melih
dc.date.accessioned2021-03-02T16:17:20Z
dc.date.available2021-03-02T16:17:20Z
dc.date.issued2020
dc.identifier.citationTunc H. C. , Sakar C. O. , Apaydin H., SERBES G., Gunduz A., Tutuncu M., Gurgen F., "Estimation of Parkinson's disease severity using speech features and extreme gradient boosting", MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, cilt.58, sa.11, ss.2757-2773, 2020
dc.identifier.issn0140-0118
dc.identifier.otherav_85cc5912-4c8a-4dbd-82a6-9c3e35e017fd
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/2792
dc.identifier.urihttps://doi.org/10.1007/s11517-020-02250-5
dc.description.abstractIn recent years, there is an increasing interest in building e-health systems. The systems built to deliver the health services with the use of internet and communication technologies aim to reduce the costs arising from outpatient visits of patients. Some of the related recent studies propose machine learning-based telediagnosis and telemonitoring systems for Parkinson's disease (PD). Motivated from the studies showing the potential of speech disorders in PD telemonitoring systems, in this study, we aim to estimate the severity of PD from voice recordings of the patients using motor Unified Parkinson's Disease Rating Scale (UPDRS) as the evaluation metric. For this purpose, we apply various speech processing algorithms to the voice signals of the patients and then use these features as input to a two-stage estimation model. The first step is to apply a wrapper-based feature selection algorithm, called Boruta, and select the most informative speech features. The second step is to feed the selected set of features to a decision tree-based boosting algorithm, extreme gradient boosting, which has been recently applied successfully in many machine learning tasks due to its generalization ability and speed. The feature selection analysis showed that the vibration pattern of the vocal fold is an important indicator of PD severity. Besides, we also investigate the effectiveness of using age and years passed since diagnosis as covariates together with speech features. The lowest mean absolute error with 3.87 was obtained by combining these covariates and speech features with prediction level fusion.
dc.language.isoeng
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectYaşam Bilimleri
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTIBBİ BİLİŞİM
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectBiyokimya
dc.subjectBilgisayar Bilimleri
dc.subjectBilgisayar Grafiği
dc.subjectBiyomedikal Mühendisliği
dc.titleEstimation of Parkinson's disease severity using speech features and extreme gradient boosting
dc.typeMakale
dc.relation.journalMEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
dc.contributor.departmentBahçeşehir Üniversitesi , ,
dc.identifier.volume58
dc.identifier.issue11
dc.identifier.startpage2757
dc.identifier.endpage2773
dc.contributor.firstauthorID2274176


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster