dc.contributor.author | AKAN, AYDIN | |
dc.contributor.author | Basar, Merve Dogruyol | |
dc.date.accessioned | 2021-03-03T08:27:09Z | |
dc.date.available | 2021-03-03T08:27:09Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Basar M. D. , AKAN A., "Chronic Kidney Disease Prediction with Reduced Individual Classifiers", ELECTRICA, cilt.18, sa.2, ss.249-255, 2018 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_17965860-f58e-4a9e-b098-35fea9aab1ac | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/21209 | |
dc.identifier.uri | https://doi.org/10.26650/electrica.2018.99255 | |
dc.description.abstract | Chronic kidney disease is a rising health problem and involves conditions that decrease the efficiency of renal functions and that damage the kidneys. Chronic kidney disease may be detected with several classification techniques, and these have been classified using various features and classifier combinations. In this study, we applied seven different classifiers (Naive Bayes, HoeffdingTree, RandomTree, REPTree, Random Subspaces, Adaboost, and IBk) for the diagnosis of chronic kidney disease. The classification performances are evaluated with five different performance metrics, i.e., accuracy, kappa, mean absolute error (MAE), root mean square error (RMSE), and F measures. Considering the classification performance analyses of these methods, six reduced features provide a better and more rapid classification performance. Seven individual classifiers are applied to the six features and the best results are obtained using individual random tree and IBk classifiers. | |
dc.language.iso | eng | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.subject | Mühendislik | |
dc.subject | Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği | |
dc.subject | Sinyal İşleme | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK | |
dc.title | Chronic Kidney Disease Prediction with Reduced Individual Classifiers | |
dc.type | Makale | |
dc.relation.journal | ELECTRICA | |
dc.contributor.department | İzmir Katip Çelebi Üniversitesi , Mühendislik Ve Mimarlık Fakültesi , Biyomedikal Mühendisliği Anabilim Dalı | |
dc.identifier.volume | 18 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 249 | |
dc.identifier.endpage | 255 | |
dc.contributor.firstauthorID | 249083 | |