Show simple item record

dc.contributor.authorAKAN, AYDIN
dc.contributor.authorBasar, Merve Dogruyol
dc.date.accessioned2021-03-03T08:27:09Z
dc.date.available2021-03-03T08:27:09Z
dc.date.issued2018
dc.identifier.citationBasar M. D. , AKAN A., "Chronic Kidney Disease Prediction with Reduced Individual Classifiers", ELECTRICA, cilt.18, sa.2, ss.249-255, 2018
dc.identifier.othervv_1032021
dc.identifier.otherav_17965860-f58e-4a9e-b098-35fea9aab1ac
dc.identifier.urihttp://hdl.handle.net/20.500.12627/21209
dc.identifier.urihttps://doi.org/10.26650/electrica.2018.99255
dc.description.abstractChronic kidney disease is a rising health problem and involves conditions that decrease the efficiency of renal functions and that damage the kidneys. Chronic kidney disease may be detected with several classification techniques, and these have been classified using various features and classifier combinations. In this study, we applied seven different classifiers (Naive Bayes, HoeffdingTree, RandomTree, REPTree, Random Subspaces, Adaboost, and IBk) for the diagnosis of chronic kidney disease. The classification performances are evaluated with five different performance metrics, i.e., accuracy, kappa, mean absolute error (MAE), root mean square error (RMSE), and F measures. Considering the classification performance analyses of these methods, six reduced features provide a better and more rapid classification performance. Seven individual classifiers are applied to the six features and the best results are obtained using individual random tree and IBk classifiers.
dc.language.isoeng
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.titleChronic Kidney Disease Prediction with Reduced Individual Classifiers
dc.typeMakale
dc.relation.journalELECTRICA
dc.contributor.departmentİzmir Katip Çelebi Üniversitesi , Mühendislik Ve Mimarlık Fakültesi , Biyomedikal Mühendisliği Anabilim Dalı
dc.identifier.volume18
dc.identifier.issue2
dc.identifier.startpage249
dc.identifier.endpage255
dc.contributor.firstauthorID249083


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record