Show simple item record

dc.contributor.authorNIKOLAUSZ, Marcell
dc.contributor.authorOzbayram, Emine Gözde
dc.contributor.authorInce, Bahar
dc.contributor.authorİnce, Orhan
dc.contributor.authorKLEINSTEUBER, Sabine
dc.date.accessioned2021-03-03T08:21:33Z
dc.date.available2021-03-03T08:21:33Z
dc.identifier.citationOzbayram E. G. , KLEINSTEUBER S., NIKOLAUSZ M., Ince B., İnce O., "Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw", ANAEROBE, cilt.46, ss.122-130, 2017
dc.identifier.issn1075-9964
dc.identifier.othervv_1032021
dc.identifier.otherav_171206ef-f120-40fa-8175-6e6f05ebf005
dc.identifier.urihttp://hdl.handle.net/20.500.12627/20853
dc.identifier.urihttps://doi.org/10.1016/j.anaerobe.2017.03.013
dc.description.abstractThe aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL(N) CH4 g(-1)vs in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set -2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. (C) 2017 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectYaşam Bilimleri
dc.subjectMikrobiyoloji
dc.subjectTemel Bilimler
dc.subjectYaşam Bilimleri (LIFE)
dc.titleEffect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw
dc.typeMakale
dc.relation.journalANAEROBE
dc.contributor.departmentHelmholtz Association , ,
dc.identifier.volume46
dc.identifier.startpage122
dc.identifier.endpage130
dc.contributor.firstauthorID105431


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record