Basit öğe kaydını göster

dc.contributor.authorFAYDASIÇOK, Özlem
dc.date.accessioned2021-03-02T15:54:07Z
dc.date.available2021-03-02T15:54:07Z
dc.identifier.citationFAYDASIÇOK Ö., "An improved Lyapunov functional with application to stability of Cohen-Grossberg neural networks of neutral-type with multiple delays", NEURAL NETWORKS, cilt.132, ss.532-539, 2020
dc.identifier.issn0893-6080
dc.identifier.othervv_1032021
dc.identifier.otherav_407d5395-0366-403e-8385-134e440de7f3
dc.identifier.urihttp://hdl.handle.net/20.500.12627/1979
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2020.09.023
dc.description.abstractThe essential objective of this research article is to investigate stability issue of neutral-type Cohen- Grossberg neural networks involving multiple time delays in states of neurons and multiple neutral delays in time derivatives of states of neurons in the network. By exploiting a modified and improved version of a previously introduced Lyapunov functional, a new sufficient stability criterion is obtained for global asymptotic stability of Cohen-Grossberg neural networks of neutral-type possessing multiple delays. The proposed new stability condition does not involve the time and neutral delay parameters. The obtained stability criterion is totally dependent on the system elements of Cohen-Grossberg neural network model. Moreover, the validity of this novel global asymptotic stability condition may be tested by only checking simple appropriate algebraic equations established within the parameters of the considered neutral-type neural network. In addition, an instructive numerical example is presented to indicate the advantages of our proposed stability result over the existing literature results obtained for stability of various classes of neutral-type neural networks having multiple delays. (c) 2020 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectComputer Vision and Pattern Recognition
dc.subjectSensory Systems
dc.subjectArtificial Intelligence
dc.subjectGeneral Computer Science
dc.subjectHuman-Computer Interaction
dc.subjectComputer Science (miscellaneous)
dc.subjectComputer Science Applications
dc.subjectPhysical Sciences
dc.subjectLife Sciences
dc.subjectYaşam Bilimleri
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectDevelopmental Neuroscience
dc.subjectCellular and Molecular Neuroscience
dc.subjectCognitive Neuroscience
dc.subjectGeneral Neuroscience
dc.subjectNeuroscience (miscellaneous)
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectNEUROSCIENCES
dc.subjectSinirbilim ve Davranış
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.titleAn improved Lyapunov functional with application to stability of Cohen-Grossberg neural networks of neutral-type with multiple delays
dc.typeMakale
dc.relation.journalNEURAL NETWORKS
dc.contributor.departmentİstanbul Üniversitesi , Fen Fakültesi , Matematik Bölümü
dc.identifier.volume132
dc.identifier.startpage532
dc.identifier.endpage539
dc.contributor.firstauthorID2489862


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster