dc.contributor.author | Koca-Eskisehirli, Beyaz Başak | |
dc.date.accessioned | 2022-07-04T13:14:21Z | |
dc.date.available | 2022-07-04T13:14:21Z | |
dc.identifier.citation | Koca-Eskisehirli B. B. , "Spectral Properties of Two Classes of Toeplitz Operators on H-p, 1 < p < infinity", BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022 | |
dc.identifier.issn | 1017-060X | |
dc.identifier.other | av_400438e3-8c47-4bea-8890-0afe8a313f81 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/182453 | |
dc.identifier.uri | https://doi.org/10.1007/s41980-022-00685-0 | |
dc.description.abstract | In this study, we consider two classes of Toeplitz operators on H-p, 1 < p < infinity: Toeplitz operators with unimodular symbols and Toeplitz operators whose spectra satisfy a specific geometric condition (the circular convexity condition). We give some inclusions for their spectrum and some estimates for their resolvents. Using obtained results, we show the existence of nontrivial invariant subspaces of these types of Toeplitz operators. This result gives a partially answer to the question of which type operators on a Banach space has a nontrivial invariant subspace. | |
dc.language.iso | eng | |
dc.subject | Matematik | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Analysis | |
dc.subject | Algebra and Number Theory | |
dc.subject | Mathematics (miscellaneous) | |
dc.subject | General Mathematics | |
dc.subject | Physical Sciences | |
dc.title | Spectral Properties of Two Classes of Toeplitz Operators on H-p, 1 < p < infinity | |
dc.type | Makale | |
dc.relation.journal | BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY | |
dc.contributor.department | İstanbul Teknik Üniversitesi , , | |
dc.contributor.firstauthorID | 3395328 | |