Show simple item record

dc.contributor.authorYozgatlı, Koray
dc.contributor.authorBaştu, Ercan
dc.contributor.authorGezer, Murat
dc.contributor.authorUysal, Nefise
dc.contributor.authorKar, Emre
dc.contributor.authorYıldızcan, Ecem Nur
dc.date.accessioned2022-02-18T10:11:18Z
dc.date.available2022-02-18T10:11:18Z
dc.date.issued2022
dc.identifier.citationUysal N., Yozgatlı K., Yıldızcan E. N. , Kar E., Gezer M., Baştu E., "İnsan Embriyo Segmentasyonu için U-Net Tabanlı Modellerin Karşılaştırılması", Bilişim Teknolojileri Dergisi, cilt.1, sa.1, ss.1-11, 2022
dc.identifier.issn1307-9697
dc.identifier.othervv_1032021
dc.identifier.otherav_83820bfc-e144-485b-92fc-c35e60436e5d
dc.identifier.urihttp://hdl.handle.net/20.500.12627/178733
dc.description.abstractThe quality of human embryos produced during in vitro fertilization is conventionally graded by clinicalembryologists and this process is time-consuming and prone to human error. Artificial intelligence methods may beused to grade images captured by time-lapse microscopy (TLM). Segmentation of embryos from the background ofTLM images is an essential step for embryo quality assessment as the background of the embryo has various artifactswhich may mislead the grading algorithms. In this study, we performed a comparative analysis of automated day-5human embryo (blastocyst) image segmentation methods based on deep learning. Four fully convolutional deep models,including U-Net and its three variants, were created using the combination of two gradient descent-based optimizers andtwo-loss functions and compared to our proposed model. The experimental results on the test set confirmed that ourcustomized Dilated Inception U-Net model with Adam optimizer and Dice loss outperformed other U-Net variants withDice coefficient, Jaccard index, accuracy, and precision of 98.68%, 97.52%, 99.20%, and 98.52%, respectively.
dc.language.isotur
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimleri
dc.subjectYapay Zeka, Bilgisayarda Öğrenme ve Örüntü Tanıma
dc.subjectMühendislik ve Teknoloji
dc.subjectArtificial Intelligence
dc.subjectGeneral Computer Science
dc.subjectComputer Science (miscellaneous)
dc.subjectComputer Vision and Pattern Recognition
dc.subjectComputer Science Applications
dc.subjectPhysical Sciences
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.titleİnsan Embriyo Segmentasyonu için U-Net Tabanlı Modellerin Karşılaştırılması
dc.typeMakale
dc.relation.journalBilişim Teknolojileri Dergisi
dc.contributor.departmentİstanbul Teknik Üniversitesi , Elektrik-Elektronik , Elektronik Ve Haberleşme Mühendisliği
dc.identifier.volume1
dc.identifier.issue1
dc.identifier.startpage1
dc.identifier.endpage11
dc.contributor.firstauthorID2798471


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record