Basit öğe kaydını göster

dc.contributor.authorMatteucci, M.
dc.contributor.authorKortelainen, Juha M.
dc.contributor.authorCerutti, S.
dc.contributor.authorBianchi, A. M.
dc.contributor.authorMendez, M. O.
dc.date.accessioned2022-02-18T10:03:52Z
dc.date.available2022-02-18T10:03:52Z
dc.identifier.citationMendez M. O. , Matteucci M., Cerutti S., Bianchi A. M. , Kortelainen J. M. , "Automatic Detection of sleep macrostructure based on bed sensors", Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, Minnesota, Amerika Birleşik Devletleri, 3 - 06 Eylül 2009, ss.5555-5556
dc.identifier.othervv_1032021
dc.identifier.otherav_77fb1059-ab50-4358-99ae-bd178b437f0c
dc.identifier.urihttp://hdl.handle.net/20.500.12627/178496
dc.identifier.urihttps://doi.org/10.1109/iembs.2009.5333734
dc.description.abstractThis study analyses the spectral components of the heart rate fluctuations of a new contact-less technology for sleep evaluation. Both heart beat interval (HBI) and movement activity were extracted from the multichannel ballistocardiographic (BCG) measurements, based on Emfit sensor foils placed into bed mattress. Powers spectral densities (PSD) of HBI have been compared with the ones obtained from the standard ECG during sleep stage 2. In addition, spectral features obtained from the contact-less technology and standard ECG has been used to automatically classify the sleep macrostructure through a time-varying autoregressive model and a Hidden Markov Model. Whole night recordings from six subjects were analyzed in this study. Spectral components did not show significant differences between the two measurements. Further, contactless technology achieved a total accuracy of 83 % and kappa index of 0.42, while standard ECG achieved an accuracy of 84 % and kappa index of 0.43 when compared to clinical sleep staging from polysomnography.
dc.language.isoeng
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectBioengineering
dc.subjectPhysical Sciences
dc.subjectMühendislik ve Teknoloji
dc.subjectGeneral Engineering
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleAutomatic Detection of sleep macrostructure based on bed sensors
dc.typeBildiri
dc.contributor.departmentPolytechnic University of Milan , ,
dc.contributor.firstauthorID3376435


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster