Basit öğe kaydını göster

dc.contributor.authorMakeig, S.
dc.contributor.authorCantiani, C.
dc.contributor.authorReni, G.
dc.contributor.authorPiazza, C.
dc.contributor.authorMiyakoshi, M.
dc.contributor.authorAkalin-Acar, Z.
dc.contributor.authorBianchi, A. M.
dc.date.accessioned2022-02-18T10:02:00Z
dc.date.available2022-02-18T10:02:00Z
dc.identifier.citationPiazza C., Miyakoshi M., Akalin-Acar Z., Cantiani C., Reni G., Bianchi A. M. , Makeig S., "An Automated Function for Identifying EEG Independent Components Representing Bilateral Source Activity", 14th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), Paphos, CYPRUS, 31 Mart - 02 Nisan 2016, cilt.57, ss.105-109
dc.identifier.otherav_75343197-0d24-4f9b-bf4a-575d9327f8c8
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/178450
dc.identifier.urihttps://doi.org/10.1007/978-3-319-32703-7_22
dc.description.abstractIndependent component analysis (ICA) decomposition can be used for the identification and localization of brain generators. ICA separates EEG data into a sum of maximally distinct signals (independent components, ICs). Source localization algorithms can be directly applied to the component projections (scalp maps). Usually, brain-generated ICs are well modeled using one equivalent dipole or, in the case of IC scalp maps that appear bilaterally symmetric, with two position-symmetric dipoles. Selection of ICs for bilateral dipole fitting is typically performed by visual inspection, a time-consuming and subjective step. We have developed and tested a routine for automated recommendation of ICs that may be best fit with a position-symmetric dual-dipole model. The algorithm is based on near bilateral symmetry of IC scalp map maxima and minima. Results showed good classification accuracy and specificity. Sensitivity can be optimized by adjusting free parameters as suggested.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectBiomaterials
dc.subjectGeneral Engineering
dc.subjectMaterials Science (miscellaneous)
dc.subjectGeneral Materials Science
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectBioengineering
dc.subjectPhysical Sciences
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMALZEME BİLİMİ, BİYOMATERYAL
dc.subjectMalzeme Bilimi
dc.subjectBiyomedikal Mühendisliği
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleAn Automated Function for Identifying EEG Independent Components Representing Bilateral Source Activity
dc.typeBildiri
dc.contributor.departmentPolytechnic University of Milan , ,
dc.identifier.volume57
dc.contributor.firstauthorID3383851


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster