Basit öğe kaydını göster

dc.contributor.authorTerzano, Mario G.
dc.contributor.authorBianchi, Anna M.
dc.contributor.authorMatteucci, Matteo
dc.contributor.authorParrino, Liborio
dc.contributor.authorCerutti, Sergio
dc.contributor.authorMariani, Sara
dc.contributor.authorManfredini, Elena
dc.contributor.authorRosso, Valentina
dc.contributor.authorGrassi, Andrea
dc.contributor.authorMendez, Martin O.
dc.contributor.authorAlba, Alfonso
dc.date.accessioned2022-02-18T10:00:39Z
dc.date.available2022-02-18T10:00:39Z
dc.date.issued2012
dc.identifier.citationMariani S., Manfredini E., Rosso V., Grassi A., Mendez M. O. , Alba A., Matteucci M., Parrino L., Terzano M. G. , Cerutti S., et al., "Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep", MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, cilt.50, sa.4, ss.359-372, 2012
dc.identifier.issn0140-0118
dc.identifier.othervv_1032021
dc.identifier.otherav_73897d0a-10d0-4943-8e95-9ca56c3745c9
dc.identifier.urihttp://hdl.handle.net/20.500.12627/178415
dc.identifier.urihttps://doi.org/10.1007/s11517-012-0881-0
dc.description.abstractThis study aims to develop an automatic detector of the A phases of the cyclic alternating pattern, periodic activity that generally occurs during non-REM (NREM) sleep. Eight polysomnographic recordings from healthy subjects were examined. From EEG recordings, five band descriptors, an activity descriptor and a variance descriptor were extracted and used to train different machine-learning algorithms. A visual scoring provided by an expert clinician was used as golden standard. Four alternative mathematical machine-learning techniques were implemented: (1) discriminant classifier, (2) support vector machines, (3) adaptive boosting, and (4) supervised artificial neural network. The results of the classification, compared with the visual analysis, showed average accuracies equal to 84.9 and 81.5% for the linear discriminant and the neural network, respectively, while AdaBoost had a slightly lower accuracy, equal to 79.4%. The SVM leads to accuracy of 81.9%. The performance achieved by the automatic classification is encouraging, since an efficient automatic classifier would benefit the practice in everyday clinics, preventing the physician from the time-consuming activity of the visually scoring of the sleep microstructure over whole 8-h sleep recordings. Finally, the classification based on learning algorithms would provide an objective criterion, overcoming the problems of inter-scorer disagreement.
dc.language.isoeng
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectTemel Tıp Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectBiyokimya
dc.subjectBilgisayar Bilimleri
dc.subjectBilgisayar Grafiği
dc.subjectBiyomedikal Mühendisliği
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectGeneral Engineering
dc.subjectComputers in Earth Sciences
dc.subjectComputer Graphics and Computer-Aided Design
dc.subjectGeneral Computer Science
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectComputer Science (miscellaneous)
dc.subjectBioengineering
dc.subjectComputer Science Applications
dc.subjectHealth Informatics
dc.subjectBiochemistry (medical)
dc.subjectPhysical Sciences
dc.subjectHealth Sciences
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTIBBİ BİLİŞİM
dc.subjectBiyoloji ve Biyokimya
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.titleEfficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep
dc.typeMakale
dc.relation.journalMEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
dc.contributor.departmentPolytechnic University of Milan , ,
dc.identifier.volume50
dc.identifier.issue4
dc.identifier.startpage359
dc.identifier.endpage372
dc.contributor.firstauthorID3379807


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster