Basit öğe kaydını göster

dc.contributor.authorAcarer, Seren
dc.contributor.authorTufekci, Mertol
dc.contributor.authorÖZÇOBAN, Mehmet Şükrü
dc.contributor.authorİSENKUL, MUHAMMED ERDEM
dc.contributor.authorSEVGEN, SELÇUK
dc.date.accessioned2022-02-18T09:43:19Z
dc.date.available2022-02-18T09:43:19Z
dc.date.issued2022
dc.identifier.citationÖZÇOBAN M. Ş. , İSENKUL M. E. , SEVGEN S., Acarer S., Tufekci M., "Modelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis", APPLIED SCIENCES-BASEL, cilt.12, sa.1, 2022
dc.identifier.issn2076-3417
dc.identifier.othervv_1032021
dc.identifier.otherav_5677e0c3-915e-43d8-910a-fa32e79fabd3
dc.identifier.urihttp://hdl.handle.net/20.500.12627/177824
dc.identifier.urihttps://doi.org/10.3390/app12010186
dc.description.abstractImpermeable base layers that are made of materials with low permeability, such as clay soil, are necessary to prevent leachate in landfills from harming the environment. However, over time, the permeability of the clay soil changes. Therefore, to reduce and minimize the risk, the permeability-related characteristics of the base layers must be improved. Thus, this study aims to serve this purpose by experimentally investigating the effects of nanomaterial addition (aluminum oxide, iron oxide) into kaolin samples. The obtained samples are prepared by applying standard compaction, and the permeability of the soil sample is experimentally investigated by passing leachate from the reactors, in which these samples are placed. Therefore, Flow Resistance (FR) analysis is conducted and the obtained results show that the Al additives are more successful than the Fe additive in reducing leachate permeability. Besides, the concentration values of some polluting parameters (Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), and Total Phosphorus (TP)) at the inlet and outlet of the reactors are analyzed. Three different models (Artificial Neural Networks (ANN), Multiple Linear Regression (MLR), Support Vector Machine (SVM)) are applied to the data obtained from the experimental study. The results have shown that polluting parameters produce high FR regression similarity rates (>75%), TKN, TP, and COD features are highly correlated with the FR value (>60%) and the most successful method is found to be the SVM model.
dc.language.isoeng
dc.subjectMedia Technology
dc.subjectKİMYA, MULTİDİSİPLİNER
dc.subjectKimya
dc.subjectTemel Bilimler (SCI)
dc.subjectMÜHENDİSLİK, MULTİDİSİPLİNER
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMALZEME BİLİMİ, MULTIDISCIPLINARY
dc.subjectMalzeme Bilimi
dc.subjectFİZİK, UYGULAMALI
dc.subjectFizik
dc.subjectHarita Mühendisliği-Geomatik
dc.subjectBiyokimya
dc.subjectAlkoloidler
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectGeneral Chemistry
dc.subjectPhysical Sciences
dc.subjectMetals and Alloys
dc.subjectMaterials Chemistry
dc.subjectGeneral Engineering
dc.subjectStatistical and Nonlinear Physics
dc.subjectChemistry (miscellaneous)
dc.subjectGeneral Materials Science
dc.subjectEngineering (miscellaneous)
dc.titleModelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis
dc.typeMakale
dc.relation.journalAPPLIED SCIENCES-BASEL
dc.contributor.departmentYıldız Teknik Üniversitesi , İnşaat Fakültesi , İnşaat Mühendisliği Bölümü
dc.identifier.volume12
dc.identifier.issue1
dc.contributor.firstauthorID3134211


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster