Show simple item record

dc.contributor.authorSEZER, Murat
dc.contributor.authorUtesch, Tillmann
dc.contributor.authorWeidinger, Inez M.
dc.contributor.authorMroginski, Maria Andrea
dc.date.accessioned2022-02-18T09:11:58Z
dc.date.available2022-02-18T09:11:58Z
dc.date.issued2012
dc.identifier.citationUtesch T., SEZER M., Weidinger I. M. , Mroginski M. A. , "Adsorption of Sulfite Oxidase on Self-Assembled Mono layers from Molecular Dynamics Simulations", LANGMUIR, cilt.28, sa.13, ss.5761-5769, 2012
dc.identifier.issn0743-7463
dc.identifier.othervv_1032021
dc.identifier.otherav_2290c9d9-ed68-4e8f-a1ba-7e6481a35a98
dc.identifier.urihttp://hdl.handle.net/20.500.12627/176710
dc.identifier.urihttps://doi.org/10.1021/la205055g
dc.description.abstractSulfite oxidase (SO) is an enzyme catalyzing the terminal step of the metabolism of sulfur-containing amino acids that is essential for almost all living organisms. The catalytic activity of SO in vertebrates strongly depends on the efficiency of the intramolecular electron transfer (JET) between the catalytic Moco domain and the cytochrome b5 (cyt b5) domain. The LET process is assumed to be mediated by large domain motions of the cyt b5 domains within the enzyme. Thus, the interaction of SO with charged surfaces may affect the mobility of the cyt b5 domain required for IET and consequently hinder SO activation. In this study, we present a molecular dynamics approach to investigating the ionic strength dependence of the initial surface adsorption of SO in two different conformations-the crystallographic structure and the model structure for an activated SO-onto mixed amino- and hydroxyl-terminated SAMs. The results show for both conformations at low ionic strengths a strong adsorption of the cyt b5 units onto the SAM, which inhibits the domain motion event required for IET. Under higher ion concentrations, however, the interaction with the surface is weakened by the negatively charged ions acting as a buffer and competing in adsorption with the cathodic cyt b5 domains. This competition prevents the immobilization of the cytochrome b5 units onto the surface, allowing the intramolecular domain motions favoring JET. Our predictions support the interpretation of recent experimental spectroelectrochemical studies on SO.
dc.language.isoeng
dc.subjectAlkoloidler
dc.subjectFizikokimya
dc.subjectTemel Bilimler
dc.subjectMühendislik ve Teknoloji
dc.subjectSurfaces and Interfaces
dc.subjectMetals and Alloys
dc.subjectMaterials Chemistry
dc.subjectChemistry (miscellaneous)
dc.subjectGeneral Materials Science
dc.subjectGeneral Chemistry
dc.subjectPhysical and Theoretical Chemistry
dc.subjectSurfaces, Coatings and Films
dc.subjectPhysical Sciences
dc.subjectBiyokimya
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMalzeme Bilimi
dc.subjectMALZEME BİLİMİ, MULTIDISCIPLINARY
dc.subjectKİMYA, FİZİKSEL
dc.subjectTemel Bilimler (SCI)
dc.subjectKimya
dc.subjectKİMYA, MULTİDİSİPLİNER
dc.titleAdsorption of Sulfite Oxidase on Self-Assembled Mono layers from Molecular Dynamics Simulations
dc.typeMakale
dc.relation.journalLANGMUIR
dc.contributor.departmentTechnical University of Berlin , ,
dc.identifier.volume28
dc.identifier.issue13
dc.identifier.startpage5761
dc.identifier.endpage5769
dc.contributor.firstauthorID3379803


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record