Basit öğe kaydını göster

dc.contributor.authorMigliorini, Matteo
dc.contributor.authorBianchi, Anna M.
dc.contributor.authorMariani, Sara
dc.date.accessioned2022-02-18T08:50:31Z
dc.date.available2022-02-18T08:50:31Z
dc.identifier.citationMigliorini M., Mariani S., Bianchi A. M. , "Decision tree for smart feature extraction from sleep HR in bipolar patients", 35th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Osaka, Japonya, 3 - 07 Temmuz 2013, ss.5033-5036
dc.identifier.othervv_1032021
dc.identifier.otherav_00050c0b-8d14-4104-b07a-128065c9da7b
dc.identifier.urihttp://hdl.handle.net/20.500.12627/175966
dc.description.abstractThe aim of this work is the creation of a completely automatic method for the extraction of informative parameters from peripheral signals recorded through a sensorized T-shirt. The acquired data belong to patients affected from bipolar disorder, and consist of RR series, body movements and activity type. The extracted features, i.e. linear and non-linear HRV parameters in the time domain, HRV parameters in the frequency domain, and parameters indicative of the sleep quality, profile and fragmentation, are of interest for the automatic classification of the clinical mood state. The analysis of this dataset, which is to be performed online and automatically, must address the problems related to the clinical protocol, which also includes a segment of recording in which the patient is awake, and to the nature of the device, which can be sensitive to movements and misplacement. Thus, the decision tree implemented in this study performs the detection and isolation of the sleep period, the elimination of corrupted recording segments and the checking of the minimum requirements of the signals for every parameter to be calculated.
dc.language.isoeng
dc.subjectSinyal İşleme
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectSignal Processing
dc.subjectGeneral Engineering
dc.subjectEngineering (miscellaneous)
dc.subjectBiomedical Engineering
dc.subjectElectrical and Electronic Engineering
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectPhysical Sciences
dc.subjectBioengineering
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, BİYOMEDİKSEL
dc.titleDecision tree for smart feature extraction from sleep HR in bipolar patients
dc.typeBildiri
dc.contributor.departmentPolytechnic University of Milan , ,
dc.contributor.firstauthorID3380726


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster