Show simple item record

dc.contributor.authorODABAŞI, Uğur
dc.contributor.authorLow, Richard M.
dc.contributor.authorRoberts, Dan
dc.date.accessioned2021-12-10T11:13:14Z
dc.date.available2021-12-10T11:13:14Z
dc.date.issued2021
dc.identifier.citationODABAŞI U., Roberts D., Low R. M. , "The integer-antimagic spectra of Hamiltonian graphs", ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, cilt.9, sa.2, ss.301-308, 2021
dc.identifier.othervv_1032021
dc.identifier.otherav_6f7dabf4-40c1-4a83-8851-9a028df12fc6
dc.identifier.urihttp://hdl.handle.net/20.500.12627/171452
dc.identifier.urihttps://doi.org/10.5614/ejgta.2021.9.2.5
dc.description.abstractLet A be a nontrivial abelian group. A connected simple graph G = (V, E) is A-antimagic, if there exists an edge labeling f : E(G)P -> A/{0(A)} such that the induced vertex labeling f(+)(v) = Sigma({u,v}is an element of E(G)) f({u, v}) is a one-to-one map. The integer-antimagic spectrum of a graph G is the set IAM(G) = {k : G is Z(k)-antimagic and k >= 2}. In this paper, we determine the integer-antimagic spectra for all Hamiltonian graphs.
dc.language.isoeng
dc.subjectAlgebra and Number Theory
dc.subjectPhysical Sciences
dc.subjectMathematics (miscellaneous)
dc.subjectGeneral Mathematics
dc.subjectAnalysis
dc.subjectTemel Bilimler (SCI)
dc.subjectMatematik
dc.titleThe integer-antimagic spectra of Hamiltonian graphs
dc.typeMakale
dc.relation.journalELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS
dc.contributor.departmentİstanbul Üniversitesi-Cerrahpaşa , Mühendislik Fakültesi , Mühendislik Bilimleri Bölümü
dc.identifier.volume9
dc.identifier.issue2
dc.identifier.startpage301
dc.identifier.endpage308
dc.contributor.firstauthorID2757741


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record