dc.contributor.author | ODABAŞI, Uğur | |
dc.contributor.author | Low, Richard M. | |
dc.contributor.author | Roberts, Dan | |
dc.date.accessioned | 2021-12-10T11:13:14Z | |
dc.date.available | 2021-12-10T11:13:14Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | ODABAŞI U., Roberts D., Low R. M. , "The integer-antimagic spectra of Hamiltonian graphs", ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, cilt.9, sa.2, ss.301-308, 2021 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_6f7dabf4-40c1-4a83-8851-9a028df12fc6 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/171452 | |
dc.identifier.uri | https://doi.org/10.5614/ejgta.2021.9.2.5 | |
dc.description.abstract | Let A be a nontrivial abelian group. A connected simple graph G = (V, E) is A-antimagic, if there exists an edge labeling f : E(G)P -> A/{0(A)} such that the induced vertex labeling f(+)(v) = Sigma({u,v}is an element of E(G)) f({u, v}) is a one-to-one map. The integer-antimagic spectrum of a graph G is the set IAM(G) = {k : G is Z(k)-antimagic and k >= 2}. In this paper, we determine the integer-antimagic spectra for all Hamiltonian graphs. | |
dc.language.iso | eng | |
dc.subject | Algebra and Number Theory | |
dc.subject | Physical Sciences | |
dc.subject | Mathematics (miscellaneous) | |
dc.subject | General Mathematics | |
dc.subject | Analysis | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Matematik | |
dc.title | The integer-antimagic spectra of Hamiltonian graphs | |
dc.type | Makale | |
dc.relation.journal | ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS | |
dc.contributor.department | İstanbul Üniversitesi-Cerrahpaşa , Mühendislik Fakültesi , Mühendislik Bilimleri Bölümü | |
dc.identifier.volume | 9 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 301 | |
dc.identifier.endpage | 308 | |
dc.contributor.firstauthorID | 2757741 | |