Show simple item record

dc.contributor.authorCURA, Tunçhan
dc.date.accessioned2021-12-10T11:12:34Z
dc.date.available2021-12-10T11:12:34Z
dc.identifier.citationCURA T., "A rapidly converging artificial bee colony algorithm for portfolio optimization", Knowledge-Based Systems, cilt.233, 2021
dc.identifier.issn0950-7051
dc.identifier.othervv_1032021
dc.identifier.otherav_6efdefa9-e2eb-4306-b67f-a986089aeb3d
dc.identifier.urihttp://hdl.handle.net/20.500.12627/171436
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85116073396&origin=inward
dc.identifier.urihttps://doi.org/10.1016/j.knosys.2021.107505
dc.description.abstract© 2021 Elsevier B.V.A survey of the relevant literature shows that there have been many studies of the portfolio optimization problem, and that the number of these studies that have been based on heuristic techniques is quite high. We present a heuristic approach to the portfolio optimization problem using the artificial bee colony technique. As a test dataset, we use weekly prices from March 1992 to September 1997 from the following indices: Hang Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in the UK, S&P 100 in the USA and Nikkei in Japan. This test dataset also includes daily prices from May 2013 to April 2016 from the XU030 and XU100 indices in Turkey. In this study, the cardinality-constrained mean–variance portfolio optimization model is treated as a mixed quadratic and integer programming problem, for which heuristic approaches are appropriate. The results of this study are compared with those of genetic algorithms, tabu search, simulated annealing, particle swarm optimization, a differential evaluation algorithm, a greedy randomized adaptive search procedure, an artificial bee colony, ant colony optimization, and a variable neighborhood search algorithm. The purpose of this paper is to present a relatively efficient and effective heuristic method to the portfolio optimization problem. The results show that the proposed artificial bee colony approach achieves these aims.
dc.language.isoeng
dc.subjectSosyal ve Beşeri Bilimler
dc.subjectSosyoloji
dc.subjectKütüphanecilik
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectVeritabanı ve Veri Yapıları
dc.subjectMühendislik ve Teknoloji
dc.subjectManagement Information Systems
dc.subjectSocial Sciences & Humanities
dc.subjectSoftware
dc.subjectPhysical Sciences
dc.subjectInformation Systems and Management
dc.subjectBİLGİ BİLİMİ VE KÜTÜPHANE BİLİMİ
dc.subjectArtificial Intelligence
dc.subjectSOSYAL BİLİMLER, İNTERDİSİPLİNER
dc.subjectBİLGİSAYAR BİLİMİ, YAZILIM MÜHENDİSLİĞİ
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectSosyal Bilimler Genel
dc.subjectBilgisayar Bilimi
dc.subjectSosyal Bilimler (SOC)
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.titleA rapidly converging artificial bee colony algorithm for portfolio optimization
dc.typeMakale
dc.relation.journalKnowledge-Based Systems
dc.contributor.departmentİstanbul Üniversitesi , İşletme Fakültesi , İşletme Bölümü
dc.identifier.volume233
dc.contributor.firstauthorID2742122


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record