Basit öğe kaydını göster

dc.contributor.authorAkilli, Mahmut
dc.contributor.authorAkdeniz, K. Gediz
dc.contributor.authorYilmaz, Nazmi
dc.date.accessioned2021-12-10T10:11:32Z
dc.date.available2021-12-10T10:11:32Z
dc.identifier.citationAkilli M., Yilmaz N., Akdeniz K. G. , "The 'wavelet' entropic index q of non-extensive statistical mechanics and superstatistics", CHAOS SOLITONS & FRACTALS, cilt.150, 2021
dc.identifier.issn0960-0779
dc.identifier.othervv_1032021
dc.identifier.otherav_2f545f2f-6d1b-43d2-a6b0-1bd952877dc8
dc.identifier.urihttp://hdl.handle.net/20.500.12627/169381
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2021.111094
dc.description.abstractGeneralized entropies developed for non-extensive statistical mechanics are derived from the Boltzmann Gibbs-Shannon entropy by a real number q that is a parameter based on q-calculus; where q is called 'the entropic index' and determines the degree of non-extensivity of a system in the interval between 1 and 3. In a very recent study, we introduced a new calculation method of the entropic index q of non extensive statistical mechanics. In this study, we show the mathematical proof of this calculation method of the entropic index. Firstly, we propose that the number of degrees of freedom, n is proportional to the inverse of the wavelet scale index,n equivalent to 1/(iscale) , where i(scale) is a wavelet based parameter called wavelet scale index that quantitatively measures the non-periodicity of a signal in the interval between 0 and 1. Then, by applying this proposition to the superstatistics approach, we derive the equation that expresses the relationship between the entropic index and the wavelet scale index, q = 1 + 2i(scale). Therefore, we name this q-index as the 'wavelet' entropic index. Lastly, we calculate the Abe entropy, Landsberg-Vedral entropy and q-dualities of the Tsallis entropy of the Logistic Map and Hennon Map using the 'wavelet' entropic index, and based on our results, compare and discuss these generalized entropies. (C) 2021 Elsevier Ltd. All rights reserved.
dc.language.isoeng
dc.subjectGenel Fizik
dc.subjectTemel Bilimler
dc.subjectAnalysis
dc.subjectAlgebra and Number Theory
dc.subjectComputational Mathematics
dc.subjectMathematics (miscellaneous)
dc.subjectGeneral Mathematics
dc.subjectMathematical Physics
dc.subjectPhysical Sciences
dc.subjectFİZİK, MATEMATİK
dc.subjectDisiplinlerarası Fizik ve İlgili Bilim ve Teknoloji Alanları
dc.subjectFizik
dc.subjectFİZİK, MULTİDİSİPLİNER
dc.subjectTemel Bilimler (SCI)
dc.subjectMatematik
dc.subjectMATEMATİK, İNTERDİSKÜP UYGULAMALAR
dc.titleThe 'wavelet' entropic index q of non-extensive statistical mechanics and superstatistics
dc.typeMakale
dc.relation.journalCHAOS SOLITONS & FRACTALS
dc.contributor.departmentİstanbul Arel Üniversitesi , ,
dc.identifier.volume150
dc.contributor.firstauthorID2718114


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster