Show simple item record

dc.contributor.authorMert, Ahmet
dc.contributor.authorKilic, Niyazi
dc.contributor.authorAkan, Aydin
dc.date.accessioned2021-03-06T21:02:18Z
dc.date.available2021-03-06T21:02:18Z
dc.identifier.citationMert A., Kilic N., Akan A., "Breast Cancer Classification by Using Support Vector Machines with Reduced Dimension", 53rd International ELMAR Symposium (ELMAR), Zadar, Hırvatistan, 14 - 16 Eylül 2011, ss.37-40
dc.identifier.othervv_1032021
dc.identifier.otherav_fce885f9-2742-4abc-8218-b22b3b9be6c9
dc.identifier.urihttp://hdl.handle.net/20.500.12627/165496
dc.description.abstractCorrect and timely diagnosis of diseases is an essential matter in medical field. Limited human capability and limitations decrease the rate of correct diagnosis. Machine learning algorithms such as support vector machine (SVM) can help physicians to diagnose more correctly. In this study, Wisconsin diagnostic breast cancer (WDBC) data set is used to classify tumors as benign and malignant. Independent component analysis (ICA) is used to reduce the dimensionality of WDBC data into two feature vectors. The effect of using two reduced features to classify breast cancer with SVM and polynomial or radial basis function (RBF) kernels are investigated. Performances of these classifiers are evaluated to find out accuracy, sensitivity and specificity. In addition, the receiver operating characteristics (ROC) curves of SVM with these kernels are presented. Results show that SVM with quadratic kernel provides the most accurate diagnosis results (94.40%) and decreases the accuracy and sensitivity values slightly when the dimensionality is reduced into two feature vector computing two independent components.
dc.language.isoeng
dc.subjectGÖRÜNTÜLEME BİLİMİ VE FOTOĞRAF TEKNOLOJİSİ
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik ve Teknoloji
dc.subjectAlgoritmalar
dc.subjectMühendislik
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleBreast Cancer Classification by Using Support Vector Machines with Reduced Dimension
dc.typeBildiri
dc.contributor.departmentPiri Reis Üniversitesi , ,
dc.contributor.firstauthorID137753


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record