dc.contributor.author | Kucuk, Mutlu | |
dc.contributor.author | Kaya, Mehmet | |
dc.contributor.author | Arican, Nadir | |
dc.contributor.author | Gurses, Candan | |
dc.contributor.author | Ahishali, Bulent | |
dc.contributor.author | Yilmaz, Canan Ugur | |
dc.contributor.author | EMİK, Serkan | |
dc.contributor.author | Orhan, Nurcan | |
dc.contributor.author | Temizyurek, Arzu | |
dc.contributor.author | Atis, Muge | |
dc.contributor.author | Akcan, Ugur | |
dc.contributor.author | Khodadust, Rouhollah | |
dc.date.accessioned | 2021-03-06T20:43:47Z | |
dc.date.available | 2021-03-06T20:43:47Z | |
dc.identifier.citation | Yilmaz C. U. , EMİK S., Orhan N., Temizyurek A., Atis M., Akcan U., Khodadust R., Arican N., Kucuk M., Gurses C., et al., "Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats", LIFE SCIENCES, cilt.257, 2020 | |
dc.identifier.issn | 0024-3205 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_fb7f52ed-e53e-4d02-be69-7a55174d3373 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/164652 | |
dc.identifier.uri | https://doi.org/10.1016/j.lfs.2020.118081 | |
dc.description.abstract | Temporal lobe epilepsy (TLE) is the most common form of epilepsy with focal seizures, and currently available drugs may fail to provide a thorough treatment of the patients. The present study demonstrates the utility of glucose-coated gold nanoparticles (GNPs) as selective carriers of an antiepileptic drug, lacosamide (LCM), in developing a strategy to cross the blood-brain barrier to overcome drug resistance. Intravenous administration of LCM-loaded GNPs to epileptic animals yielded significantly higher nanoparticle levels in the hippocampus compared to the nanoparticle administration to intact animals. The amplitude and frequency of EEG-waves in both ictal and interictal stages decreased significantly after LCM-GNP administration to animals with TLE, while a decrease in the number of seizures was also observed though statistically insignificant. In these animals, malondialdehyde was unaffected, and glutathione levels were lower in the hippocampus compared to sham. Ultrastructurally, LCM-GNPs were observed in the brain parenchyma after intravenous injection to animals with TLE. We conclude that glucose-coated GNPs can be efficient in transferring effective doses of LCM into the brain enabling elimination of the need to administer high doses of the drug, and hence, may represent a new approach in the treatment of drug-resistant TLE. | |
dc.language.iso | eng | |
dc.subject | Sağlık Bilimleri | |
dc.subject | Dahili Tıp Bilimleri | |
dc.subject | Tıbbi Ekoloji ve Hidroklimatoloji | |
dc.subject | Eczacılık | |
dc.subject | Temel Eczacılık Bilimleri | |
dc.subject | Yaşam Bilimleri | |
dc.subject | Temel Bilimler | |
dc.subject | FARMAKOLOJİ VE ECZACILIK | |
dc.subject | Farmakoloji ve Toksikoloji | |
dc.subject | Yaşam Bilimleri (LIFE) | |
dc.subject | Tıp | |
dc.subject | Klinik Tıp (MED) | |
dc.subject | Klinik Tıp | |
dc.subject | TIP, ARAŞTIRMA VE DENEYSEL | |
dc.title | Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats | |
dc.type | Makale | |
dc.relation.journal | LIFE SCIENCES | |
dc.contributor.department | İstanbul Üniversitesi , , | |
dc.identifier.volume | 257 | |
dc.contributor.firstauthorID | 2286324 | |