Basit öğe kaydını göster

dc.contributor.authorChan, C. Savio
dc.contributor.authorCarcak, Nihan
dc.contributor.authorHernandez, Vivian M.
dc.contributor.authorLorincz, Magor L.
dc.contributor.authorCRUNELLI, Vincenzo
dc.contributor.authorDAVID, Francois
dc.contributor.authorFurdan, Szabina
dc.contributor.authorONAT, FİLİZ
dc.contributor.authorGOULD, Timothy
dc.contributor.authorMeszaros, Adam
dc.contributor.authorDi Giovanni, Giuseppe
dc.date.accessioned2021-03-06T20:28:00Z
dc.date.available2021-03-06T20:28:00Z
dc.date.issued2018
dc.identifier.citationDAVID F., Carcak N., Furdan S., ONAT F., GOULD T., Meszaros A., Di Giovanni G., Hernandez V. M. , Chan C. S. , Lorincz M. L. , et al., "Suppression of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Determined and Pharmacologically Induced Absence Seizures", JOURNAL OF NEUROSCIENCE, cilt.38, ss.6615-6627, 2018
dc.identifier.issn0270-6474
dc.identifier.otherav_fa55daac-1c15-498c-8b59-9c5e61f87e19
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/163914
dc.identifier.urihttps://doi.org/10.1523/jneurosci.0896-17.2018
dc.description.abstractHyperpolarization-activated cyclic nucleotide-gated (HCN) channels and the I-h current they generate contribute to the pathophysiological mechanisms of absence seizures (ASs), but their precise role in neocortical and thalamic neuronal populations, the main components of the network underlying AS generation, remains controversial. In diverse genetic AS models, I-h amplitude is smaller in neocortical neurons and either larger or unchanged in thalamocortical (TC) neurons compared with nonepileptic strains. A lower expression of neocortical HCN subtype 1 channels is present in genetic AS-prone rats, and HCN subtype 2 knock-out mice exhibit ASs. Furthermore, whereas many studies have characterized I-h contribution to "absence-like" paroxysmal activity in vitro, no data are available on the specific role of cortical and thalamic HCN channels in behavioral seizures. Here, we show that the pharmacological block of HCN channels with the antagonist ZD7288 applied via reverse microdialysis in the ventrobasal thalamus (VB) of freely moving male Genetic Absence Epilepsy Rats from Strasbourg decreases TC neuron firing and abolishes spontaneous ASs. A similar effect is observed on gamma-hydroxybutyric acid-elicited ASs in normal male Wistar rats. Moreover, thalamic knockdown of HCN channels via virally delivered shRNA into the VB of male Stargazer mice, another genetic AS model, decreases spontaneous ASs and I-h-dependent electrophysiological properties of VB TC neurons. These findings provide the first evidence that block of TC neuron HCN channels prevents ASs and suggest that any potential anti-absence therapy that targets HCN channels should carefully consider the opposite role for cortical and thalamic I-h in the modulation of absence seizures.
dc.language.isoeng
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTemel Bilimler
dc.subjectNEUROSCIENCES
dc.subjectSinirbilim ve Davranış
dc.subjectYaşam Bilimleri
dc.titleSuppression of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Determined and Pharmacologically Induced Absence Seizures
dc.typeMakale
dc.relation.journalJOURNAL OF NEUROSCIENCE
dc.contributor.department, ,
dc.identifier.volume38
dc.identifier.issue30
dc.identifier.startpage6615
dc.identifier.endpage6627
dc.contributor.firstauthorID82402


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster