Basit öğe kaydını göster

dc.contributor.authorGurkanli, AT
dc.contributor.authorOztop, Serap
dc.date.accessioned2021-03-06T12:42:05Z
dc.date.available2021-03-06T12:42:05Z
dc.date.issued2001
dc.identifier.citationOztop S., Gurkanli A., "Multipliers and tensor products of weighted L-p-spaces", ACTA MATHEMATICA SCIENTIA, cilt.21, ss.41-49, 2001
dc.identifier.issn0252-9602
dc.identifier.othervv_1032021
dc.identifier.otherav_f51f2eb7-5b3d-46b6-ac83-cdcea54fe20c
dc.identifier.urihttp://hdl.handle.net/20.500.12627/160661
dc.description.abstractLet G be a locally compact unimodular group with Haar measure rmdx and Le be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space A(omega)(p,q) (G) and prove that A(omega)(p,q) (G) is a translation invariant Banach space. Furthermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then A(omega)(p,q) (G) admits an approximate identity bounded in L-1 omega (G). It is also proved that the space L-omega(p) (G) x (L1 omega) L-omega(q) (G) is isometrically isomorphic to the space A(omega)(p,q) (G) and the space of multipliers from L-omega(p) (G) to L-omega -1(q') (G) is isometrically isoinorphic to the dual of the space A(omega)(p,q) (G) iff G satisfies a property P-p(q). At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from L-omega(1) (G) to A(omega)(p,q) (G) is the space A(omega)(p,q) (G).
dc.language.isoeng
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.titleMultipliers and tensor products of weighted L-p-spaces
dc.typeMakale
dc.relation.journalACTA MATHEMATICA SCIENTIA
dc.contributor.department, ,
dc.identifier.volume21
dc.identifier.issue1
dc.identifier.startpage41
dc.identifier.endpage49
dc.contributor.firstauthorID127464


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster