dc.contributor.author | Gurkanli, AT | |
dc.contributor.author | Oztop, Serap | |
dc.date.accessioned | 2021-03-06T12:42:05Z | |
dc.date.available | 2021-03-06T12:42:05Z | |
dc.date.issued | 2001 | |
dc.identifier.citation | Oztop S., Gurkanli A., "Multipliers and tensor products of weighted L-p-spaces", ACTA MATHEMATICA SCIENTIA, cilt.21, ss.41-49, 2001 | |
dc.identifier.issn | 0252-9602 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_f51f2eb7-5b3d-46b6-ac83-cdcea54fe20c | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/160661 | |
dc.description.abstract | Let G be a locally compact unimodular group with Haar measure rmdx and Le be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space A(omega)(p,q) (G) and prove that A(omega)(p,q) (G) is a translation invariant Banach space. Furthermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then A(omega)(p,q) (G) admits an approximate identity bounded in L-1 omega (G). It is also proved that the space L-omega(p) (G) x (L1 omega) L-omega(q) (G) is isometrically isomorphic to the space A(omega)(p,q) (G) and the space of multipliers from L-omega(p) (G) to L-omega -1(q') (G) is isometrically isoinorphic to the dual of the space A(omega)(p,q) (G) iff G satisfies a property P-p(q). At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from L-omega(1) (G) to A(omega)(p,q) (G) is the space A(omega)(p,q) (G). | |
dc.language.iso | eng | |
dc.subject | Matematik | |
dc.subject | Temel Bilimler (SCI) | |
dc.title | Multipliers and tensor products of weighted L-p-spaces | |
dc.type | Makale | |
dc.relation.journal | ACTA MATHEMATICA SCIENTIA | |
dc.contributor.department | , , | |
dc.identifier.volume | 21 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 41 | |
dc.identifier.endpage | 49 | |
dc.contributor.firstauthorID | 127464 | |